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 In this paper, the major objective was to theoretically investigate, proof the 

existence and local optimality state of singular control by applying L1 type 

objective function. The objective function L1 has been applied in a 

Compartmental model since it is linear in the control variables. Generalized 

Legendre-Clebsch Condition applied showed the existence of singular control 

for both vaccination and sanitation that are optimal. The condition for local 

stability of the model was also established and the basic reproductive number 

assimilated. The disease-free equilibrium of the model is locally 

asymptotically stable if 𝑅𝑂< 1, and unstable if 𝑅𝑂>1. This means that all 

interventions applied need to reduce the basic reproductive number to 

reduce the force of infection. 
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1.   Introduction 

The control and elimination of organisms that cause diseases as well as the introduction of antibiotics 

and vaccinations has been the focus since 1950’s in combating diseases. However, factors such as 

resistance to medicine by micro-organisms, demographic evolution and accelerated urbanization led 

to new infections and re-emergence of existing diseases such as cholera. 

The application of mathematical models has therefore become an important tool in epidemiology of 

in providing control measures of epidemics. Using Compartmental models have been used to 

describe the dynamic behavior of populations exposed to diseases, leading to proposals of optimal 

control. These models differ on the choices of the dynamism, constraints and the cost of application. 

Global incidence of cholera has significantly been reduced through control strategies such as 

vaccination, sanitation, treatment, and education though it remains a public health problem in many 

developing countries. Cholera is an acute diarrheal infection caused by ingestion of food or water 

contaminated with the bacterium Vibrio cholerae. According to [1] it is estimated that each year there 

are 1.3 million to 4.0 million cases of cholera, and 21 000 to 143 000 deaths worldwide due to cholera.  

The disease dynamics depend on the interactions between human host, the pathogen, and the 

environment as stated by [2] which leads to two pathways that is environment to human and human 

- human transmission. The number of cholera cases reported by [1] has continued to be high over 

the last few years. During 2016; 132,121 cases were notified from 38 countries, including 2420 

deaths. The discrepancy between these figures and the estimated burden of the disease is because 
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many cases are not recorded due to limitations in surveillance systems and fear of impact on trade 

and tourism. 

In 1979, Capasso and Paveri – Fontana proposed a mathematical model where they studied cholera 

epidemic which occurred in Mediterranean in 1973 [3]. This model had components which included 

pathogen concentration in water and infected individual. The model was later extended in 2001 by 

Codeco [4] and considered the role of environment (water) and introduced susceptible compartment 

in the population model. Both models only assumed the environment to human mode of 

transmission. In 2011 [5], Mukandavire clarified the work done by [6] in 2005 in studying the 2008 to 

2009 cholera outbreak in Zimbabwe where they explored two types of cholera transmission that is 

human to human (horizontal) and environment to human transmissions. In 2011, Wang and Modnak 

[7] extended the model to involve three interventions which are sanitation, treatment and 

vaccination and from their analysis, these controls applied are closely linked and that the power of 

one measure as an optimal strategy depended on its relative cost and the setting in the population. 

Yusuf and Benyah [8] in 2012 presented optimal intervention for treatment and vaccination for a SIR 

model, where they applied on a variable size of the population and formulated the optimal problems 

for the controls. Their major goal was to get combined optimal interventions to minimize the force 

of infection and cost in a particular strategy. According to Gaff and Schaefer [9], they stated that 

optimal control theory was applied to give the most strategy that reduced the number of infected 

individuals while efficiently balancing the two strategies applied. Based on the dynamic’s models by 

Hethcote [10], various strategic control schedules have been studied by applying techniques in the 

optimal.  These models so far applied L2 objective function in measuring the weight of control 

strategy applied but according to [11], L2 objective are not suitable in biological approach because 

they lead to continuous control functions that are difficult to administer in practical applications and 

therefore, there is need to apply L1 objective function to establish if this can lead to a better 

intervention administration to help control the cholera infection. In 2011, [12] initiated the analysis 

of an optimal control problem for a SIR model with vaccination and treatment by applying geometric 

optimal control and based on their conclusion, they found out that only vaccination was singular. This 

propelled the application of vaccination and sanitation to check if both can be singular at the same 

time. 

In this paper, we are majorly concerned with the state of singular control problem. Singular control 

is a challenging type of stochastic control problems. We theoretically investigate and proof the 

existence and local optimality of singular control, the role of combined basic reproductive number 

and to ascertain stability analysis and equilibrium point of the model by applying L1 type objective 

function which is linear in the control variables.  

2. Methodology 

a) Mathematical Model 

The objective is to formulate a model for cholera that includes relevant biological details and accounts 

for the intervention strategies. We use this model of an epidemic, imposing vaccination, and 

sanitation on it and then determine an optimal strategy for rolling out the control strategies. We do 

this optimization for the case of SIR model with simple constraints. Since the control variables appear 

linearly in the Hamiltonian, the Pontryagin’s Maximum Principle leads to either singular or bang-bang 
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controls. Let S(t) represent the number of susceptible at time t, I(t) the number of infective at t and 

R(t) the number of recovered individuals in time. We also denote the total number of individuals by 

N(t) = S(t) + I(t) + R(t) and assume that all births enter the susceptible class S(t). 

b) The SIR Model Equation 

The system of differential equations describing the dynamics of Cholera outbreak is formulated below 

with their initial conditions 

 𝑆′ = ΛN − (µ + v(t)) S(t) − βII(t)S(t) − βBB(t)S(t) + ωR(t), S (0) = S0 ≥ 0 

  𝐼′ = βII(t)S(t) + βBB(t)S(t) –  γI(t) − µI(t) − ξ I(t), I (0) = I0 ≥ 0                 𝑅′ =  γI(t) − µR(t) − ωR(t) + v(t)S(t), 

R (0) = R0 ≥ 0               (1) 

 𝐵′ = ξ I(t) − mB(t) − δ B(t), B (0) =B0 ≥ 0 

Where µ denotes the natural death rate, Λ is the rate of recruitment; βI is the rate of transmission 

from human to human, βB is the rate of transmission from the environment to human, γ is the rate 

of recovery, ω is the rate at which the recovered are susceptible, ξ is the rate at which the infectious 

shed, δ is the rate of Vibrio cholerae, v is the rate at which the susceptible are vaccinated, m is the 

rate of sanitation to the environment. 

The solution of the model system (1) is biologically feasible for all times. The solution domain is  

 Ω = [(S, I, R, B) ∈ ℜ+
4: S ≥ 0, I ≥ 0, R ≥ 0, B ≥ 0, S + I + R = N] 

Since R(t) = N(t) - S(t) - I(t), we now consider a new system of differential equation (1): 

𝑆′= ΛN − (µ + v(t)) S(t) − βII(t)S(t) − βBB(t)S(t) + ωR(t), S (0) = S0 ≥  

  𝐼′ =) – γ   I(t) − µI(t) − ξ I(t), I (0) = I0 ≥ 0                                        (2)      

𝑁′ = ΛN- µN- ξ I, N (0) = N0 ≥ 0                            

𝐵′ = ξ I(t) − mB(t) − δ B(t), B (0) =B0 ≥ 0 

The above model system has a disease-free equilibrium (DFE)  

 DFE- is a point where disease is (i.e. I=B=0) absent in the population and thus it is given as.  

DFE = (SO, IO, BO ) = [
𝛬𝑁

µ + 𝑣)
, 0, 0]                      (3) 

To analyze the DFE, we first find the basic reproductive number. 

c) Basic Reproduction Number 

The basic reproduction number 𝑅0 is the average number of secondary infections caused when a 

single infectious person is introduced into a susceptible population. 𝑅0 is determined by applying 

the next generation method which is given by 𝐹𝑉−1. 

   Where: 𝐹- Rate at which new infected enter compartment,𝑖 
                 𝑉- Denote the transfer of individuals into and out of compartment,𝑖  
 
Using equation (2), we obtain the following: 
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F = [
𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆

0
] and V = [

(𝛾 +  𝜇 + 𝜉)𝐼
(𝛿 + 𝑚)𝐵 − 𝜉𝐼

]               (4) 

              
Obtaining the derivatives of  𝐹 and 𝑉 about 𝒙 = (𝐼, 𝐵) 

 

F = [
𝛽𝐼𝑆0 𝛽𝐵𝑆0

0 0
]   and      V = [

(𝛾 + 𝜇 + 𝜉) 0

−𝜉  (𝛿 + 𝑚)
]              (5)            

 
We obtain 𝑉−1 given as 

 

𝑽−𝟏 =
1

(𝛾+𝜇+𝜉)(𝛿+𝑚)
[
(𝛿 + 𝑚) 0

𝜉  (𝛾 + 𝜇 + 𝜉)
]       (6) 

 
Therefore 𝐹𝑉−1 is then given as 
 

𝑭𝑽−𝟏 =[
𝛽𝐼𝑆0

(𝛾+𝜇+𝜉)
+

𝛽𝐵𝑆0𝜉

(𝛾+𝜇+𝜉)(𝛿+𝑚)

0

𝛽𝐵𝑆0

(𝛿+𝑚)

0
]               (7) 

 
From the characterization equation (7), we take the largest spectral radius of  𝐹𝑉−1 to obtain 
𝑅0 as shown below                                 
 

𝑹𝟎= 
𝛽𝐼Λ𝑁

(𝛾+𝜇+𝜉)(𝜇+𝑣)
+

𝛽𝐵Λ𝑁𝜉

(𝛾+𝜇+𝜉)(𝛿+𝑚)(𝜇+𝑣)
                    (8) 

d) Local Stability of DFE 

Theorem: The disease-free equilibrium is locally asymptotically stable if Ro < 1 and is unstable 

if Ro >1 

Proof: The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation 

                [𝐽 − 𝜆𝐼] = 0                                                (9) 

For the disease-free equilibrium to be asymptotically stable, then all eigenvalues are negative.  

We obtain 𝐽 from equation (2) 

𝐽=

[
 
 
 
 −(𝜇 + 𝑣) − 𝜆 −

𝛽𝐼Λ𝑁

(𝜇+𝑣)
−
𝛽𝐵Λ𝑁

(𝜇+𝑣)

0
𝛽𝐼Λ𝑁

(𝜇+𝑣)
− (𝛾 + 𝜇 + 𝜉) − 𝜆

𝛽𝐵Λ𝑁

(𝜇+𝑣)

0 𝜉 −(𝛿 + 𝑚) − 𝜆]
 
 
 
 

    (10) 

Taking one of the eigenvalues to be –(µ +  𝑣), we apply Routh Hurwitz criterion as shown by 

[13] by checking the signs of the eigenvalues of the reduced matrix as show 

[

𝛽𝐼Λ𝑁

(𝜇+𝑣)
− (𝛾 + 𝜇 + 𝜉)

𝛽𝐵Λ𝑁

(𝜇+𝑣)

𝜉 −(𝛿 + 𝑚)
]                       (11) 
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We obtain the determinant: 

-(𝛿 + 𝑚) [
𝛽𝐼Λ𝑁

(𝜇+𝑣)
− (𝛾 + 𝜇 + 𝜉)]-

𝛽𝐵Λ𝑁𝜉

(𝜇+𝑣)
 = 0             (12) 

Making the determinant to be positive, we have: 

(𝛿 + 𝑚) 
𝛽𝐼Λ𝑁

(𝜇+𝑣)
+
𝛽𝐵Λ𝑁𝜉

(𝜇+𝑣)
< (𝛿 +𝑚)(𝛾 + 𝜇 + 𝜉)       (13) 

Dividing both sides by (𝛿 + 𝑚)(𝛾 + 𝜇 + 𝜉)    , we obtain 

𝛽𝐼Λ𝑁

(𝛾+𝜇+𝜉)(𝜇+𝑣)
+

𝛽𝐵Λ𝑁𝜉

(𝛾+𝜇+𝜉)(𝛿+𝑚)(𝜇+𝑣)
< 1                   (14) 

But  

𝛽𝐼Λ𝑁

(𝛾+𝜇+𝜉)(𝜇+𝑣)
+

𝛽𝐵Λ𝑁𝜉

(𝛾+𝜇+𝜉)(𝛿+𝑚)(𝜇+𝑣)
 = 𝑅0                        (15) 

Thus 𝑅0 < 1 this therefore means that the model converges to DFE and hence there is no 

epidemic. 

e) Optimal Control Strategies 

The objective is to choose a combined strategy of vaccination and sanitation in such a way to 

minimize the value of objective function, the force of infection and to minimize the cost of 

vaccination and sanitation of the population. According to [14] they stated that a quadratic-control 

(L2) cost function is not appropriate for problems with biological or biomedical background. 

Therefore, we consider a linear (L1) cost function.  

The objective function 𝐽 given as: 
 

𝐽(𝑣,𝑚) =∫ [𝑎0𝐼 + 𝑎1𝑣𝑆 + 𝑎2𝑚𝐵]
𝑡𝑓
𝑡0

𝑑𝑡                          (16)            

 

 𝑎0𝐼- This term represents the number of people who become infected and is also a measure 
of deaths associated with the outbreak 

 𝑎1𝑣𝑆 - This term, where a1 is a positive parameter associated with the control 𝑣(𝑡), represents 
the cost of vaccination given to a susceptible. 

 𝑎2𝑚𝐵 - This term, where a2 is a positive parameter associated with the control 𝑚(𝑡), represents 
the cost of sanitation in the bacterial concentration. 

 With 𝑎0 > 0,𝑎1 > 0 and 𝑎2 > 0, where we minimize the infected group 𝐼(𝑡) by reducing the 
force of infection, while also minimizing the cost of vaccination and sanitation. The control 
function 𝑣(𝑡), with 0 ≤ 𝑣(𝑡) ≤ 1 (Representing fraction of susceptible that require 
vaccination). When 𝑣(𝑡) is close to 1, then vaccination failure is low but with high 
implementation costs (The value 𝑣∗(𝑡) = 1 is a characteristic of a perfectly effective vaccine 
but cholera vaccines have low protective efficacy of about 85%. Therefore, the upper bound 
of this control may not be necessarily attainable). Let 𝑚(𝑡) denote the level of sanitation, 
scaled so that 0 ≤ 𝑚(𝑡) ≤ 1. The effect of sanitation efforts is modeled as a reduction in 
vibrio ingestion rates, thus the level of sanitation decreases the transmission rate of cholera 
𝑚∗(𝑡) = 1 would signify no transmission of pathogens, especially if there is good sanitation). 
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Necessary optimality conditions: 
The basic control problem in compact form contains OCP                                                   

{
 
 
 
 

 
 
 
 𝐽(𝑣,𝑚) = ∫ [𝑎0𝐼 + 𝑎1𝑣𝑆 + 𝑎2𝑚𝐵]

𝑡𝑓
𝑡0

𝑑𝑡

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑆′ = Λ𝑁 − (𝜇 + 𝑣)𝑆 − 𝛽𝐼𝐼𝑆 − 𝛽𝐵𝐵𝑆 + 𝜔𝑅, 𝑆(0) = 𝑆0 ≥ 0

𝐼′ = 𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆 − (𝛾 + 𝜇 + 𝜉)𝐼, 𝐼(0) = 𝐼0 ≥ 0

𝑁′ = (Λ − 𝜇)𝑁 − 𝜉𝐼, 𝑁(0) = 𝑁0 ≥ 0

𝐵′ = 𝜉𝐼 − (𝑚 + 𝛿)𝐵, 𝐵(0) = 𝐵0 ≥ 0

0 ≤ 𝑣(𝑡) ≤ 1
0 ≤ 𝑚(𝑡) ≤ 1

      (17) 

 
Introducing the state 𝑥 = ( 𝑆, 𝐼, 𝐵, 𝑁)T, the dynamics of the system is a multi-input control linear 
system of the form 

   
 𝑥′=  𝑓(𝑥) + 𝑔1(𝑥)𝑣 + 𝑔2(𝑥)𝑚                                       (18)                                                                                     
 
With the drift vector field 𝑓(𝑥) given by 
 

𝑓(𝑥) = [

Λ𝑁 − 𝜇𝑆 − 𝛽𝐼𝐼𝑆 − 𝛽𝐵𝐵𝑆 + 𝜔𝑅

𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆 + 𝜔𝑅 − (𝛾 + 𝜇 + 𝜉)𝐼
Λ𝑁 − 𝜇𝑁 − 𝜉𝐼
𝜉𝐼 − 𝛿𝐵

]                 (19) 

 
And control vector fields 𝑔1 and 𝑔2 are given by 
 

𝑔1(𝑥) = [

−𝑆
0
0
0

]      and  𝑔2(𝑥) = [

0
0
0
−𝐵

]                              (20) 

 

The integrand of the objective is denoted 
𝐿(𝑥, 𝑣, 𝑚) = 𝑎0𝐼 + 𝑎1𝑣𝑆 + 𝑎2𝑚𝐵 
                           The necessary optimality conditions of the Maximum Principle for the problem will be evaluated. 
Minimizing equation (2), the standard Hamiltonian function is given by: 
 
𝐻 = 𝐿(𝑥, 𝑣,𝑚) +𝜆(𝑓(𝑥) + 𝑔1(𝑥)𝑣 + 𝑔2(𝑥)𝑚 

𝐻 =𝑚𝑖𝑛𝑣,𝑚[𝑎0𝐼 + 𝑎1𝑣𝑆 + 𝑎2𝑚𝐵 + 𝜆𝑆𝑆
′ + 𝜆𝐼𝐼

′ + 𝜆𝑁𝑁
′ + 𝜆𝐵𝐵

′]    (21) 

 
The adjoint equations formed are: 

  

[
 
 
 
𝜆′𝑆 = −𝑎1𝑣 + 𝜆𝑆[𝛽𝐼𝐼 + 𝛽𝐵𝑆 + 𝜇 + 𝑣] − 𝜆𝐼[𝛽𝐼𝐼 + 𝛽𝐵𝐵]

𝜆′𝐼 = −𝑎0 + 𝜆𝑆𝛽𝐼𝑆 − 𝜆𝐼[𝛽𝐼𝑆 − (𝛾 + 𝜇 + 𝜉)𝐼] + (𝜆𝑁 − 𝜆𝐵)𝜉

𝜆′𝑁 = −𝜆𝑆Λ − 𝜆𝑁[Λ − 𝜇]

𝜆′𝐵 = −𝑎2𝑚 + 𝜆𝑆𝛽𝐵𝑆 − 𝜆𝐼𝛽𝐵𝑆 + 𝜆𝐵(𝑚 + 𝛿) ]
 
 
 

      (22) 

Where 𝜆𝑆(𝑇) = 0, 𝜆𝐼(𝑇) = 0, 𝜆𝑁(𝑇) = 0   and   𝜆𝐵(𝑇) = 0     are the transversality conditions.  
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The Hamiltonian is minimized with respect to the control variables. Since the Hamiltonian is linear 

in the controls, we consider the switching functions 𝜙𝑣(𝑡) and 𝜙𝑚(𝑡) and separate the minimization 

problem into two: 

   

{
𝜙𝑣 = 𝐻𝑣 = 𝑎1𝑆 − 𝜆𝑆𝑆
𝜙𝑚 = 𝐻𝑚 = 𝑎2𝐵 − 𝜆𝐵𝐵

                                                (23) 

 
The control is bang-bang if the switching function 𝜙𝑖(𝑡) = 0 is not sustained over an interval of 

time but occurs at infinitely many points. It occurs at the extreme values of the control set. It is a 

piecewise constant function, switching between only the lower and upper bounds. The control is 

also said to be singular, if the switching function  𝜙𝑖(𝑡) = 0  and its derivatives vanish over an 

open interval. The switch times are times when the optimal control switches from lower to upper 

boundary or switches to singular control. We theoretically investigate the existence and local 

optimality of singular or bang-bang control for the system as shown by [12]. Optimal controls then 

need to be synthesized from bang and singular controls through the analysis of the switching 

function. If 𝜙(𝜏) = 0, but �̇�(𝜏) ≠ 0 then the control has a switch at time 𝜏. To analyze the 

structure of the optimal controls, the switching function and its derivatives are analyzed first. In 

this paper, the existence and the local optimality of singular controls are analyzed. 

 

 
Hamiltonian being linear in the controls, the minimum condition requires  
 

𝑣∗(𝑡) = {

0 𝑖𝑓 𝜙𝑣(𝑡) > 0

1 𝑖𝑓 𝜙𝑣(𝑡) < 0

𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑖𝑓 𝜙𝑣(𝑡) = 0

   and 

 

𝑚∗(𝑡) = {

0 𝑖𝑓 𝜙𝑚(𝑡) > 0

1 𝑖𝑓 𝜙𝑚(𝑡) < 0

𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑖𝑓 𝜙𝑚(𝑡) = 0

                                   (24) 

     
f) Singular Extremals. 

 
To investigate the singular case, let  𝜙𝑖(𝑡) = 0 on some interval. In this case the minimum condition 

(21) does not determine the value of the controls. Instead, the singular controls can be computed 

by differentiating the switching functions in time until that point of time the control value appears 

in the derivative, say 𝜙(𝑘)(𝑡) and then using the obtained equation 𝜙(𝑘)(𝑡) to get the control. We 

will then define the singular optimal control if it has the value between 0 and 1. According to [15], 

he stated that for a single input system that is linear in the control, k=2r, and r is called the order 

of the singular arc. This is subjected to vary with time over an interval but when it is constant it 

forms the necessary condition for optimality of a singular arc of order r, which is termed as the 

Generalized Legendre-Clebsch condition that is given as: 
 

(−1)𝑟 =
𝜕

𝜕(𝑢)
 
𝑑2𝑟

𝑑𝑡2𝑟
𝜕𝐻

𝜕𝑢
 ≥ 0                                          (25) 
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Along the extremals. 
𝜕𝐻

𝜕𝑢
= 𝜙 , Is the switching function for the problem? In summary we have:  

 
𝑑

𝑑𝑡
(𝜙𝑖(𝑡)) = 0                                                                   (26) 

                                                                                                              
Further solving for the value of the singular control if it is not present in equation (26) by 

obtaining the 2r derivative that will give optimal controls 

𝑑2𝑟

𝑑𝑡2𝑟
 (𝜙𝑖(𝑡)) = 0                                                                (27) 

To check on the Generalized Legendre-Clebsch (GLC) for the singular control to be optimal, the 

derivative of  
𝑑2𝑟

𝑑𝑡2𝑟
( 𝜙𝑖(𝑡)) with the respect to the control (𝑣,𝑚) needs to be negative as stated 

by [15]. 

𝜕

𝜕(𝑣,𝑚)
 [
𝑑2𝑟

𝑑𝑡2𝑟
  (𝜙𝑖(𝑡))]                                                        (28)      

Proof 1: Vaccination 

The switching function is given as:     

𝜙𝑣 = 𝑎1𝑆 − 𝜆𝑆S                                                                (29)                                                                                         

The derivate is given by 

𝜙′
𝑉
= 𝜆𝐼𝑆[𝛽𝐼𝐼 + 𝛽𝐵𝐵] − 𝑎1𝑆(𝜇 + 𝛽𝐼𝐼 + 𝛽𝐵𝐵)                     (30)                           

If the control variable does not appear in the first derivative, we check on the second derivative to 

obtain 

     𝜙′′
𝑣

 =  𝜆𝑆𝛽𝐼𝑆(𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆) + (𝜆1𝛽𝐵𝑆 − 𝑎1𝛽𝑏𝑆)(𝜉𝐼 − 𝑚𝐵 − 𝛿𝐵) + (𝜆𝐼𝐼𝛽𝐼 + 𝜆𝐼𝛽𝐵𝐵 −

𝑎1𝜇 − 𝑎1𝛽𝐼𝐼 − 𝑎1𝛽𝐼𝑆)(Λ𝑁 − 𝜇𝑆 − 𝛽𝐼𝐼𝑆 − 𝛽𝐵𝐵𝑆 + 𝜔𝑅) − 𝛽𝐼𝐼𝑆(𝑎0 − 𝜆𝑁𝜉 − 𝑎1𝜉) +

𝛽𝐵𝐵𝑆(𝑎0 − 𝜆𝐼𝐼(𝛾 + 𝜇 + 𝜉) − 𝜆𝑁𝜉 − 𝑎1𝜉) + 𝑎1𝛽1𝑆[(𝛾 + 𝜇 + 𝜉) − (𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆)] −

𝑣𝑆(𝜆𝐼𝛽𝐼𝑆𝐼 + 𝜆𝐼𝛽𝐵𝐵𝑆 − 𝑎1𝜇𝑆 − 𝑎1𝛽𝐼𝐼𝑆 − 𝑎1𝛽𝐵𝐵𝑆)                   (31) 

 
The above equation can be written in the form: 
 
𝜙′′

𝑣
 = 𝜓𝑣(𝑡)𝑣(𝑡) + 𝜓1(𝑡) = 0                             (32) 

 
And solving for the singular control as 
 

𝑣𝑠𝑖𝑛𝑔(𝑡) = - 
𝜓1(𝑡)

𝜓𝑣(𝑡)
                                                     (33) 

 

If 𝜓𝑣(𝑡) ≠ 0  and 0 ≤  − 
𝜓1(𝑡)

𝜓𝑣(𝑡)
 ≤ 1 

 
With  
𝜓𝑣(𝑡) = 𝑆(𝜆𝐼𝛽𝐼𝑆𝐼 + 𝜆𝐼𝛽𝐵𝐵𝑆 − 𝑎1𝜇𝑆 − 𝑎1𝛽𝐼𝐼𝑆 − 𝑎1𝛽𝐵𝐵𝑆 
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                                                                              (34) 
And                                                                       
 
Ψ𝑣(𝑡) = 𝜆𝑆𝛽𝐼𝑆(𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆) + (𝜆𝐼𝛽𝐵𝑆 + 𝑎1𝛽𝐵𝑆)(𝜉𝐼 − 𝑚𝐵 − 𝛿𝐵) + (𝜆𝐼𝛽𝐼𝐼 + 𝜆𝐼𝛽𝐵𝐵 −
𝑎1𝜇 − 𝑎1𝛽𝐼𝐼 − 𝑎1𝛽𝐼𝑆)(Λ𝑁 − 𝜇𝑆 − 𝛽𝐼𝐼𝑆 − 𝛽𝐵𝐵𝑆 + 𝜔𝑅) − 𝛽𝐼𝐼𝑆(𝑎0 − 𝜆𝑁𝜉 − 𝑎1𝜉) +
𝛽𝐵𝐵𝑆(−𝑎0 − 𝜆𝐼𝛽𝐼(𝛾 + 𝜇 + 𝜉) − 𝜆𝑁𝜉 − 𝑎1𝜉) + 𝑎1𝛽𝐼𝑆[(𝛾 + 𝜇 + 𝜉) − (𝛽𝐼𝐼𝑆 + 𝛽𝐵𝐵𝑆)] (35) 
 
Thus, the Generalized Legendre-Clebsch Condition (GLC) requires that the following 
inequality holds for the singular control to be optimal: 
 
𝜕

𝜕𝑣
[
𝑑2

𝑑𝑡2
𝜙𝑣]=−𝑆(𝜆𝐼𝛽𝐼𝐼𝑆 + 𝜆𝐼𝛽𝐵𝑆𝐵 − 𝑎1𝜇 − 𝑎1𝛽𝐵𝐵𝑆 − 𝑎1𝛽𝐼𝐼𝑆)    (36)                         

 
Therefore, the control characterization is given as: 
 

𝑣∗(𝑡) = {

0 𝑖𝑓 𝜙𝑣(𝑡) > 0

1 𝑖𝑓 𝜙𝑣(𝑡) < 1

𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑖𝑓 𝜙𝑣(𝑡) = −
Ψ1(𝑡)

Ψ𝑣(𝑡)

                          (37) 

 

 

Thus, the control is optimal at 𝑡 only if    𝜙𝑣(𝑡) = 0  and  0 ≤  −
𝛹1(𝑡)

𝛹𝑣(𝑡)
 ≤ 1                                                   

 
Proof 2: Sanitation 
 
𝜙𝑚  = 𝑎2𝐵 − 𝜆𝐵𝐵              

 
The derivative is 
 
𝜙′

𝑚
 = 𝜆𝐼𝛽𝐵𝐵𝑆 − 𝜆𝑆𝛽𝐵𝐵𝑆 − 𝑎2𝛿𝐵                              (38) 

 
Obtaining the second derivative 
 
𝜙′′

𝑚
 = −𝑚𝐵(𝜆𝐼𝛽𝐵𝑆 − 𝜆𝑆𝛽𝐵𝑆 − 𝑎2𝛿𝐵) + (𝜆𝐼𝛽𝐵𝑆 − 𝜆𝑆𝛽𝐵𝑆)(𝜉𝐼 + Λ𝑁 + 𝜔𝑅) +

𝛽𝐵𝐵𝑆(𝑎0 + 𝑎1𝑣 + 𝜆𝑆𝛽𝐼𝑆 − 𝜆𝐼𝛽𝐼𝑆 + 𝜆𝑆𝛽𝐵𝑆 + 𝜆𝐼𝛽𝐵𝐵 + 𝜆𝐼𝐼(𝛾 + 𝜇 + 𝜉) + 𝜆𝑁𝜉 − 𝑎2𝜉 +
𝑎2𝜉𝛿 + 𝜆𝑆𝛽𝐵𝛿𝑆𝐵)                                                       (39) 
 
The above equation can be written in the form: 

 
  𝜙′′

𝑚
 = 𝜓𝑚(𝑡)𝑚(𝑡) + 𝜓2(𝑡) = 0                               (40)                                                                                                     

      
And solving for the singular control as 

 

𝑚𝑠𝑖𝑛𝑔(𝑡) = −
𝜓2(𝑡)

𝜓𝑚(𝑡)
                                                     (41) 

         

If 𝜓𝑚(𝑡) ≠ 0     and  0 ≤  − 
𝜓2(𝑡)

𝜓𝑚(𝑡)
 ≤ 1   
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𝜓𝑚(𝑡) = 𝐵(𝜆𝐼𝛽𝐵𝑆 − 𝜆𝑆𝛽𝐵𝑆 − 𝑎2𝛿𝐵)                              (42) 
And 
 
𝜓2(𝑡) = (𝜆𝐼𝛽𝐵𝑆 − 𝜆𝑆𝛽𝐵𝑆)(𝜉𝐼 + Λ𝑁 + 𝜔𝑅) + 𝛽𝐵𝐵𝑆(𝑎0 + 𝑎1𝑣 + 𝜆𝑆𝛽𝐼𝑆 − 𝜆𝐼𝛽𝐼𝑆 + 𝜆𝑆𝛽𝐵𝑆 +
𝜆𝐼𝛽𝐵𝐵 + 𝜆𝐼𝐼(𝛾 + 𝜇 + 𝜉) + 𝜆𝑁𝜉 − 𝑎2𝜉 + 𝑎2𝜉𝛿 + 𝜆𝑆𝛽𝐵𝛿𝑆𝐵)    (43)        
                                                                                                                                                                                                   
Thus, the Generalized Legendre-Clebsch Condition (GLC) requires that the following 
inequality holds for the singular control to be optimal 
 
𝜕

𝜕𝑚
[
𝑑2

𝑑𝑡2
𝜙𝑚(𝑡)]  = −𝐵(𝜆𝐼𝛽𝐵𝑆 − 𝜆𝑆𝛽𝐵𝑆 − 𝑎2𝛿𝐵)                (44) 

                                                                                                                                                           
Therefore, the control characterization is given as: 
 

𝑚∗(𝑡) = {

0 𝑖𝑓 𝜙𝑚(𝑡) > 0

1 𝑖𝑓 𝜙𝑚(𝑡) < 1

𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑖𝑓 𝜙𝑚(𝑡) = −
Ψ2(𝑡)

Ψ𝑚(𝑡)

                            (45) 

 

Thus, the control is optimal at 𝑡 only if    𝜙𝑚(𝑡) = 0  and  0 ≤  −
𝛹2(𝑡)

𝛹𝑚(𝑡)
 ≤ 1     

Proposition: As per the two cases of linear vaccination and sanitation models, it shows that 
singular controls are locally optimal.  

3.  Parameter Estimation 

The parameter values used for the analysis are shown below: 

Table 1. Parameter and Values 

Parameter Symbol Values Source 

Recruitment and Natural death rate Λ and µ 4.108 x 

10−5/day 

[1] 

Immunity waning rate ω 0.005/day [16] 

Population N 10000 Assumed 

Transmission rate from environment 𝛽𝐵 0.21/day [6] 

Transmission rate from human-human 𝛽𝐼 0.02/day [6] 

Recovery rate 𝛾 0.2/day [6] 

Bacterial concentration in water 𝐵 106 cells/ml [4] 

Shedding rate of bacteria by human 𝜉 10 cells/ml-
day 

[6] 

Bacterial death rate in the environment 𝛿 0.03/day [4] 
 

 

Using the above estimates in Table 1, the basic reproduction number is estimated: 
 

𝑅0 = 
0.20536

0.0000418+𝑣
 [0.021 + 

2.14

0.033+𝑚
 ]                                   (46) 

 
The above results presented, shows that varying the values of 𝑣 and 𝑚 will alter the number of 



Optimal Control Problem for Cholera Epidemiology 

75 

susceptible and infected persons.  For instance, if 𝑣 = 𝑚 = 0, then 𝑅𝑂 > 1. Thus the endemic 

equilibrium is locally asymptotically stable. This implies that if there is no vaccination and sanitation, 

then the disease will persist and more infection will occur.  

If  𝑣 = 𝑚 = 1, then 𝑅0 = 0.42973 < 1,the disease-free equilibrium is locally asymptotically 

stable. Thus, the disease dies out. In conclusion,  𝑅𝑂  decreases as the parameters 𝑣 and 𝑚 

increases. This means that when more effort is put on vaccination and we also improve the 

sanitation, then we are lowering rate of infection. 

4.  Local Stability 

Stability analysis of DFE 

Applying Jacobian matrix in equation (5) and parameter values estimated, will give the below 
matrix 

 

𝐽  = 

[
 
 
 −(0.00004 + 𝑣) − 𝜆 −

0.0086

(0.000041+𝑣)
−

0.0879

(0.00004+𝑣)

0
0.0086

(0.00004+𝑣)
− 10.2 − 𝜆

0.0879

(0.000041+𝑣)

0 10 −(0.033 + 𝑚) − 𝜆]
 
 
 

           (47)                          

One of the eigenvalue obtained from the above matrix is −(0.00004 +  𝑣) and the other two 
roots are calculated as 
 

0 = 𝜆2 + [
0.0086

(0.00004+𝑣)
+𝑚 − 10.167] 𝜆 − (

0.0086

(0.00004+𝑣)
− 10.2) (𝑚 + 0.033) −

0.0879

(0.00004+𝑣)
                                

(48) 
               
We apply quadratic method to solve for𝜆: 
 

𝜆2,3  = 
−𝑤±√𝑤2−4𝑟𝑘

2𝑟
                                                          (49) 

 
Where 

{

𝑤 =
0.0086

(0.00004+𝑣)
+𝑚 − 10.167

𝑘 = (
0.0086

(0.00004+𝑣)
− 10.2) (𝑚 + 0.033) −

0.0879

(0.00004+𝑣)

𝑟 = 1

                                                                                (50) 

Disease free equilibrium is asymptotically stable if all the eigenvalues are negative. Hence the 

disease-free equilibrium is locally asymptotically stable as long as 𝑅0 < 1, whereas unstable if 𝑅0 > 

1 

5. Conclusion  

On applying Generalized Legendre-Clebsch Condition in equations (34) and (42) respectively, the two 

theorems for vaccination and sanitation showed that there exists singular control. The condition for 

the local stability of the model was established, basic reproductive number, and Pontryagin’s 

Maximum Principle applied to characterize the interventions and derived the optimality of the 
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system. The singular control structures were analyzed though there was a desire to check on the 

feasible concatenations with bang-bang controls and the numerical analysis. Singular control is 

expected to lead to a simpler and efficient numerical solution method which when solved will assist 

scientists to develop appropriate models for a cholera control and to guide public health 

professionals to make better strategies for controlling the disease. 
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