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 Under-five mortality rates is one of the health indicators of great importance 
to any country. Kenya is among the countries in the Sub-Saharan Africa with 
high Under-Five Child Mortality (U5CM) rates. It is therefore important to 
apply best statistical approaches to establish which factors influence child 
mortality. This will go a long way to inform the optimal design of health 
intervention strategies within the country and globally. In this study, 
Random Survival Forest (RSF) and Accelerated Failure Time Shared Frailty 
Models have been used to analyze U5CM based on the Kenya Demographic 
Health Survey (KDHS, 2014) dataset. Akaike Information Criterion (AIC) 
statistics was used to select the model of best fit. Results obtained from 
fitting the AFT-shared frailty model, showed that there was presence of 
unobserved heterogeneity at community level. However, there was no 
evidence to conclude the existence of unobserved heterogeneity at the 
household level. Among the variants of the AFT Shared Frailty models 
analysed, the Log-logistic AFT-  model showed that “the sons who have 
died,” “daughters who have died,” “duration of breastfeeding,” and 
“months of breastfeeding” had significant influence on the U5CM (p <0.05). 
The Log-logistic AFT model with Gaussian frailty emerged to be the best 
model for the U5CM since it had the least Akaike Information Criterion (AIC) 
statistic. On the other hand, the results from Random Survival Forest, “sons 
who have died,” “daughters who have died,” “living children plus current 
pregnancy,” “sex of child,” “duration of breastfeeding,” “number of living 
children,” and “months of breastfeeding” were ranked as important factors 
that have influence on the under-five mortality. Furthermore, this study 
also found out that there was presence of unobserved heterogeneity at 
community level of clustering. At the household level however, there 
was no unobserved heterogeneity, hence there was no need for 
household frailty term. 
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1. Introduction 

Based on World Health Organization (WHO) findings, the Under-Five Child Mortality (U5CM) rate 

has declined by a margin of 56% globally, from an estimated rate of 93 deaths per 1000 live births 

in 1990 to 41 deaths per 1000 live births in 2016. Approximately 20,000 fewer children died every 

day in 2016 than in 1990 [1]. In Africa back in 1970, the child mortality rate was 229 from every 

1,000 live births. By 2010, this rate had reduced to 111 deaths per 1,000 live births [2]. The under-
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five child mortality has reduced by 39% in Sub-Saharan Africa between 1990 and 2011. Many 

studies in Sub-Saharan Africa show that the under-five population is growing rather fast [3]. 

According to the UNDP-Kenya reports despite significant declines in under-five mortality over the 

last 3 decades, Kenya did not achieve Millennium Development Goal 4 (MDG 4 on Reduced Child 

Mortality) by 2015 [32].  

In the developing nations, the study of U5CM has always been a very important issue in health 

programs. A nation’s level of wealth index growth and quality of life are imitated by its U5CM rates. 

Besides, to monitor and assess population and healthiness programs and guidelines, the U5CM 

rates are used. In Kenya, the infant mortality rate was reported to be 52 deaths per 1,000 live 

births, and U5CM rate is 74 deaths per 1,000 live births according to the KDHS 2014. All early 

childhood mortality rates declined between the 2003 and 2014, based on statistics from the KDHS 

surveys [4]. However, the MDG 2015 Target was 33 deaths per 1000 for the U5CM and 26 deaths 

per 1000 for the Infant Mortality Rates, which was not achieved by Kenya. Guided by the National 

Health Sector Strategic Plan II (NHSSPII) and the Vision 2030 Medium Term Plan, the Kenya 

government has embarked on efforts to fast track the attainment of the Sustainable Development 

Goals (SDG’s) on Child survival and development.  

The primary objective of this study is to identify the factors responsible for the Under-Five Child 

Mortality (U5CM), and to examine whether or not there is presence of unobserved heterogeneity 

on under-five mortality both at household and community levels. The statistical challenges include 

variable selection problem when determining the determinants of U5CM based on KDHS data with 

over 700 such possible covariates. Besides, this work attempts to account for possible clustering in 

data at household or community level, something that has been ignored in many similar studies.  

The statistical problem involved in studies aimed at establishing the determinants of U5CM lies in 

variable selection. This is a major statistical problem when dealing with large datasets (especially 

in terms of establishing possible covariates that could be included in a prognostic model) KDHS 

2014 for instance provides 1000 plus variables that may qualify as determinants of U5CM.  One of 

the main approaches gaining prominence in statistics is the machine learning paradigm. This is 

because of the lack of over-reliance of such techniques on statistical distributions.   Therefore, the 

use of machine learning technique (in this case Random Survival Forest) can assist in selection of 

these risk factors in a reliable manner [5]. For instance, Random Survival Forests [6] was used to 

determine U5CM in a study carried out in Uganda [5]. However, in this study, the variables included 

in the original model were selected based on previous literature. This is often the practice, although 

it is a very subjective way of deciding which covariates are to be included into the predictive model. 

Some studies have applied the Accelerated Failure Time (AFT) model   assuming that effects of the 

covariates accelerate or decelerate the survival lifetime of the U5CM by some constant [8,9]. But 

these determinants do not at all times take into consideration the actual differences in the risk 

particularly in clustered survival data. So, inclusion of the unobserved random factor (frailty term) 

on the model improves correct measure of the determinants effect, thereby evading the problem 

of overestimation or underestimation of the model parameters. To cater for clustering at 
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community or household levels, frailty type models have been used to model U5CM [7]. AFT-shared 

frailty model has received much attention recently. W. Pan [7] proposed the AFT frailty model by 

assuming the AFT gamma frailty model. P.K. Swain [8] used AFT – shared frailty models to study 

HIV/AIDS patients on Anti-Retroviral Therapy. P. Lambert [9] used parametric AFT with random 

effects on a kidney transplant survival data. Vaupel [12] introduced the term frailty in order to 

account for the unobserved heterogeneity, random effects and association in univariate (survival) 

models. In understanding the determinants of U5CM using shared frailty model [13], a study 

conducted in Uganda found out that there was existence of unobserved heterogeneity at 

household level but there was no enough evidence to conclude existence of unobserved 

heterogeneity at community level. Sex of the household head, sex of the child, and number of 

births in the past one year were found to be having significant influence on mortality [13]. A study 

on infant mortality in India it was found that there was presence of unobserved heterogeneity both 

at individual and community levels. In the same study, it was also established that child mortality 

was higher among women married before 18 years of age compared to those married after 17 

years of age [14]. 

Various studies have been conducted to estimate the effect of prognostic factors on the U5CM in 

Kenya [21,22], but very few studies have considered use of machine learning algorithms and the 

effect of clustering This study attempts to investigate the factors influencing child survival by using 

Random Survival Forest for variable selection and AFT-shared frailty model to account for clustering. 

Gaussian frailty model with baseline distributions as exponential, Weibull, log-normal, and log- 

logistic have been used to estimate the effect of prognostic factors on the U5CM. The result of this 

model has been compared to the results of a model without frailty model. In order to compare the 

overall performance of these models, we have used Akaike Information Criterion (AIC) statistics. 

The remaining part of this paper is organized as follows. In the Methodology section, the data, 

the theory behind Random Survival Forest, AFT and AFT-shared frailty models have been 

discussed. In the results section, the outcome obtained from RSF analysis on KDHS-2014 

dataset as well as from AFT and AFT-shared frailty model have been shown, followed by a 

discussion section and a conclusion. 

2. Materials and Methods 

a. Data 

The dataset used is the child records from Kenya Demographic Health Surveys (KDHS 2014).  The 

KDHS 2014 dataset was drawn from a master sampling frame, Fifth National Sample Survey, and 

Evaluation Programme (NASSEPV). This is a kind of structure that Kenya National Bureau of Statistics 

(KNBS) currently uses to carry out household surveys in Kenya.  Kenya as a country is divided into a 

total of forty-seven counties. In the process concerning this development of NASSEPV, each of these 

forty-seven counties was stratified in two categories; urban and rural strata, resulting into 92 strata. 

This sample had a total of 40,300 households from 1612 community clusters that were spread across 

the entire country, with 995 clusters from the rural zones and 617 from urban zones. The samples 

were selected independently in each sampling stratum, using a two-stage sample design. In the first 
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stage, the 1612 EAs were chosen with equal likelihood from NASSEPV frame.  The households from 

listing operations served as the sampling frame for the second stage of selection, from where a total 

of 25 households were selected from each cluster [4]. 

The KDHS-2014 Child record dataset includes women of ages between 15 to 49 years. This study 

includes only children of between 1-59 months old, accounting for a total observation of 20354.  

The study variables: 

The response variable; 

Under-five mortality is described as the mortality from the age of 1month to the age of 59months. 
The outcome of interest in this study is “risk of death occurring in an age interval of 1-59month 
period.” The dependent variable was therefore, survival time in months for children under five years 
of age.       

The independent variables and variable selection;  

The original data has 1099 variables excluding survival time and event variables. Out of these, 
313 variables had 100% missing data and were deleted. Therefore, random forest for survival 
regression and classification was applied to the remaining 786 covariates to select those 
variables that had influence on under-five mortality, ranking the variables according to their 
importance. The split rule used was logrank and its variants, based on an overall proportional 
hazards assumption. The split rules could be varied in future work, to account for possible cases 
on non-proportional hazard, while applying a classification algorithm to a dataset with event 
time as data outcome.   

b. Random Survival Forest: 

Random forest for survival regression and classification is implemented in the R-package 

randomForestSRC. Random survival forest is a simple but robust approach that has been considered 

as an attractive alternative model choice for survival data. This approach is an extension of the 

random forest [6]. This method is fully non-parametric, has fewer assumptions and can deal with 

data of high dimension easily [5]. Random survival forest does not impose a restrictive structure on 

how the variables should be combined.  If the relationship between the predictor variables and the 

response variable is complex with non-linear patterns and interactions then RSF is capable of 

incorporating these complexities robustly [15, 16]. 

Steps to develop algorithm for random survival forests; 

 B bootstrap samples are drawn from the original data. Each bootstrap sample excludes 37% of 
the data on average, this excluded data is referred to as Out-Of Bag data (OOB data). 

 Grow a survival tree for each bootstrap sample. At every node of the tree, p candidate 
variables are randomly selected. The node is split using the candidate variable that maximizes 
the survival difference between daughter nodes. 

 Tree is grown to its full size under the constraint that a terminal node must have not less 
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than d0>0 unique deaths. 

 Compute a cumulative hazard function (CHF) for each tree. Average to obtain ensemble CHF. 

 Use the OOB data to calculate prediction error for the ensemble CHF. 

Log-rank split rule 

Suppose a node h can be split into two daughter nodes α and β. The best split at a node h, on a 

covariate x at a split point c∗ is the one that gives the largest log-rank statistic between the two 

daughter nodes. The log-rank statistic for a split on x at a given covariate value c∗ is defined as; 

 

𝑖(𝑥, 𝑐 ∗) =
∑ (

𝑡𝑁
𝑗=𝑡1

𝑑𝛼,𝑗 − 𝐸(𝐷𝛼,𝑗))

√∑ 𝑣
𝑡𝑁
𝑗=𝑡1

𝑎𝑟(𝐷𝛼,𝑗)

                                                                                          (1) 

where dα,j is the number of events in daughter node α at time point j. The expected number of events 
in daughter node α, 𝐸(𝐷𝛼,𝑗) and its variance are given by; 

𝐸(𝐷𝛼,𝑗) = 𝑑𝑗 (
𝑅𝛼,𝑗

𝑅𝑗
)                                                                                                                  (2) 

𝑣𝑎𝑟(𝐷𝛼,𝑗) =
𝑅𝛼,𝑗

𝑅𝑗
(1 −

𝑅𝛼,𝑗

𝑅𝑗
) (

𝑅𝑗 − 𝑑𝑗

𝑅𝑗 − 1
) 𝑑𝑗                                                                               (3) 

Where d j is the total number of observed events at time point j. Rα,j is the number of individuals at 

risk in node α at time point j and R j the combined number at risk in daughter nodes α and β. 

c. Accelerated Failure Time (AFT) and AFT-shared frailty models: 

AFT-model is a parametric approach that follows distributional assumptions. It assumes that the 

effects of the covariates are either to accelerate or decelerate the survival time by some 

constant. 

Accelerated failure time (AFT) model 

The probability density function is expressed as follows; 

𝑓(𝑡) = (𝜎𝑡)−1𝑓𝑜 (
𝑙𝑜𝑔𝑡 − 𝑙𝑜𝑔𝜓(𝑋)

𝜎
)                                                                                      (4) 

whereby 𝜎 is the scale parameter, and 𝜓(𝑋) is some function of covariates. 

𝜓(𝑋) = 𝑒𝑥𝑝(𝜇 + 𝑋′𝛽)                                                                                                                 (5) 

Therefore, corresponding Accelerated Failure Time (AFT) model can be written in a 

regression form as; 

 
𝑙𝑜𝑔𝑇 = 𝜇 + 𝑋′𝛽 + 𝜎𝜖                                                                                                                   (6) 

whereby µ is an intercept, 𝜖 is a random variable with a density function 𝑓𝑜(𝜖) and the 
corresponding baseline survival function So(𝜖). AFT models do allow a wide range of 
parametric forms for the density function. The survival function of the AFT models is expressed 
in the following form; 
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𝑆(𝑡) = 𝑆𝑜
∗[(

𝑡

𝜓(𝑋)
)

1

𝜎] = 𝑆𝑜 (
𝑙𝑜𝑔𝑡 − 𝑙𝑜𝑔𝜓(𝑋)

𝜎
)                                                                           (7) 

Where 𝑆𝑜
∗ is the baseline survival function. Since 𝜓(𝑋) = 𝑒𝑥𝑝(𝜇 + 𝑋′𝛽), the survival function 

can be rewritten as; 

                     𝑆(𝑡) = 𝑆𝑜 (
𝑙𝑜𝑔𝑡−𝜇−𝑋′𝛽

𝜎
)                                                                                                       (8)  

Inference for AFT models 
 
For random lifetime 𝑇𝑖for the subjects 𝑖 = 1, . . . , 𝑛, the likelihood function under model (8) is 
expressed as; 

𝐿(𝛽, 𝜎) = ∏(

𝑛

𝑖=1

1

𝜎
𝑓𝑜(

𝑙𝑜𝑔𝑡𝑖 − 𝜇 − 𝑋′𝛽

𝜎
))𝛿𝑖𝑆𝑜(

𝑙𝑜𝑔𝑡𝑖 − 𝜇 − 𝑋′𝛽

𝜎
)1−𝛿𝑖  .                                (9) 

 

Using 𝜖𝑖 =
𝑙𝑜𝑔𝑡𝑖−𝜇−𝑋′𝛽

𝜎
, the log-likelihood function takes the form; 

 

𝑙(𝛽, 𝜎) = −𝑟𝑙𝑜𝑔𝜎 + ∑[

𝑛

𝑖=1

𝛿𝑖𝑙𝑜𝑔𝑓𝑜(𝜖𝑖) + (1 − 𝛿𝑖)𝑙𝑜𝑔𝑆𝑜(𝜖𝑖)]                                            (10) 

Where 𝑟 = ∑𝛿𝑖 refers to the number of events. The first partial derivatives of 𝑙(𝛽, 𝜎)will give the 

maximum likelihood estimators �̂�and �̂�. 

The distributions mostly used in AFT models are exponential, Weibull, lognormal, and log-logistic 
distributions. 
 
Exponential distribution 

It has only one parameter, it’s pdf is expressed by; 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 > 0, 𝜆 > 0                                                                                               (11) 

The survival function, 𝑆(𝑡) which refers to as the chances of an individual living up to or past time 𝑡 
can be obtained from; 

𝑆(𝑡) = − ∫ 𝜆
𝑡

0

𝑒−𝜆𝑢𝑑𝑢                                                                                                       (12) 

= 𝑒−𝜆𝑡                                                                                                                          

Cumulative distribution function, 𝐹(𝑡) is expressed as; 

𝐹(𝑡) = 1 − 𝑆(𝑡) = 1 − 𝑒−𝜆𝑡                                                                                               (13) 

Hazard function,ℎ(𝑡) is given by; 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝜆𝑒−𝜆𝑡

𝑒−𝜆𝑡
= 𝜆                                                                                                       (14) 
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Cumulative hazard function, 𝐻(𝑡) is given by; 

𝐻(𝑡) = ∫ 𝜆
𝑡

0

𝑑𝑢 = 𝜆𝑡                                                                                                                (15) 

 
Weibull distribution 

This distribution has two parameters; its pdf can be given by; 

𝑓(𝑡) = 𝜆𝑘𝑡𝑘−1𝑒−𝜆𝑡𝑘
, 𝜆 > 0, 𝑘 > 0                                                                                      (16) 

Its survival function, 𝑆(𝑡) would be expressed b; 

𝑆(𝑡) = 𝑒−𝜆𝑡𝑘
                                                                                                                            (17) 

The cumulative distribution function, 𝐹(𝑡) can be gotten from; 

𝐹(𝑡) = 1 − 𝑆(𝑡) = 1 − 𝑒−𝜆𝑡𝑘
                                                                                        (18) 

The hazard function,ℎ(𝑡) would be given by; 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝜆𝑘𝑡𝑘−1𝑒−𝜆𝑡𝑘

𝑒−𝜆𝑡𝑘 = 𝜆𝑘𝑡𝑘−1                                                                        (19) 

Cumulative hazard function, 𝐻(𝑡) would be given by; 

𝐻(𝑡) = ∫ 𝜆
𝑡

0

𝑘𝑢𝑘−1𝑑𝑢 =
𝜆𝑘𝑢𝑘

𝑘
|0

𝑡 = 𝜆𝑡𝑘                                                                        (20) 

 
 
Lognormal distribution 
 
General formula for probability density function of the lognormal distribution is; 

𝑓(𝑡) =
𝑒−((ln ((𝑡−𝜃)/𝑚))2/(2𝜎2))

(𝑡 − 𝜃)𝜎√2𝜋
                                                                                       (21) 

where 𝑡 > 𝜃; 𝑚, 𝜎 > 0, 𝜎 refers to shape parameter, 𝜃 represents parameter for location and 𝑚 
refers to scale parameter (and is also median for the distribution). When 𝑡 = 𝜃, 𝑓(𝑡) = 0. In a 
scenario whereby 𝜃 = 0, and 𝑚 = 1 we will have a standard distribution. The probability density 
function (pdf) for the standard form is 

𝑓(𝑡) =
𝑒−((𝑙𝑛𝑡)2/2𝜎2)

𝑡𝜎√2𝜋
                                                                                                          (22) 

where 𝑡 > 0, 𝜎 > 0, since the general form of the pdf can be written in standard form, succeeding 
formulars have been written in standard form. Cumulative distribution function, 𝐹(𝑡) is expressed 
as 

𝐹(𝑡) = 𝛷 (
ln(𝑡)

𝜎
)                                                                                                                   (23) 

where 𝑡 ≥ 0; 𝜎 > 0. 𝛷 refers to the cumulative distribution function of normal distribution. 
Survival function expressed as 
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𝑆(𝑡) = 1 − 𝐹(𝑡) = 1 − 𝛷 (
ln(𝑡)

𝜎
)                                                                                       (24) 

Hazard function is expressed as; 

ℎ(𝑡) =
(

1

𝑡𝜎
) 𝜙 (

𝑙𝑛𝑡

𝜎
)

𝛷 (
−𝑙𝑛𝑡

𝜎
)

                                                                                                                    (25) 

where 𝑡 > 0, 𝜎 > 0. 𝜙 refers to pdf of normal distribution. The cumulative hazard function is expressed 
as; 

𝐻(𝑡) = −𝑙𝑛 (1 − 𝛷 (
ln(𝑡)

𝜎
))                                                                                                     (26) 

 

Log-logistic distribution 
 

Log logistic distribution is a parametric model which can be applied in survival analysis for those 

events whose rates increase initially and then decrease over time. It is a probability distribution 

of a random variable whose logarithm has a logistic distribution. It’s probability density 

function is expressed as; 

 

𝑓(𝑡) =
(𝛽/𝛼)(𝑡/𝛼)𝛽−1

(1 + (𝑡/𝛼)𝛽)2
                                                                                                               (27) 

where 𝑡 > 0, 𝛼 > 0, 𝛽 > 0. 𝛼 and 𝛽 are scale and shape parameters respectively. The cumulative 
distribution function (CDF), 𝐹(𝑡), is given by; 

𝐹(𝑡) =
1

1 + (𝑡/𝛼)−𝛽
                                                                                                                      (28) 

It’s survival function, 𝑆(𝑡) is; 

𝑆(𝑡) = 1 − 𝐹(𝑡) = [1 + (𝑡/𝛼)𝛽]−1                                                                                            (29) 

It’s hazard function, ℎ(𝑡) is expressed as; 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

(𝛽/𝛼)(𝑡/𝛼)𝛽−1

1 + (𝑡/𝛼)𝛽
                                                                                                     (30) 

Best fitting model selection 

According to Akaike [26], the principle in statistical model building dictates that the increase in the 

number of parameters should be stopped the moment it has been discovered that more increase 

does not give significant improvement of the fit of the model to the data. He suggested the use of 

Akaike Information Criterion (AIC) which is expressed as; 

 

𝐴𝐼𝐶 = −2(𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘                                                                                           (31) 

 



MUTAKI K. et al.   |MATHEMATICS 

28 

Where 𝑘 refers to the number of parameters. AIC value will always increase if an unnecessary 

variable has been included in the model. Therefore, this means that the smaller the AIC value the 

better the model. 

Accelerated failure time (AFT) shared frailty model 

Frailty is an unobserved random effect that is shared by subjects within a group or it can be 

referred to as an unobserved random factor that modifies multiplicatively the hazard function 

of an individual or cluster of individuals. It is known that subjects in the same cluster are more 

alike than the subjects in different clusters since they share similar environment. In this study 

we have applied a shared frailty model to study the cluster variation effect on the child survival 

which cannot be accounted for by the covariates itself. Shared frailty model is a mixture model 

since the common risk in each cluster (the frailty) is assumed to be random [8]. This model 

assumes that all the event times in a cluster are independent given the frailty terms. This is to 

say, it is a conditional independence model where the frailty is common to all subjects in a 

cluster and so responsible for creating dependence between event times. This is the reason a 

shared frailty model can be expressed as a mixed (random effects) model in survival analysis 

with cluster variation (frailty) and individual variation described by the hazard function [10]. 

Thus, frailty models try to account for correlations within groups. It is worth noting that just 

applying Cox-proportional hazards model or accelerated failure time (AFT) model directly to a 

cluster data while ignoring the possible correlations in each cluster may lead to incorrect 

conclusions [11]. 

AFT-shared frailty model is suitable when subjects within a cluster share a common unobserved 

heterogeneity. It explicitly takes into account the possible correlation among failure times [8]. 

Frailty term gets into the AFT-model as random effects. AFT models with shared frailty is expressed 

in the following form 

𝑙𝑜𝑔𝑇𝑖𝑗 = 𝜇 + 𝑋′𝑖𝑗𝛽 + 𝑤𝑖 + 𝜎𝜖𝑖𝑗                                                                                                                (32)  

whereby 𝜇 is an intercept, 𝛽 is a vector of regression coefficients, 𝑋𝑖𝑗 is the vector of fixed-effect 

covariate, 𝜎 is a scale parameter, 𝜖𝑖𝑗′𝑠 are independent and identically distributed random 

errors,𝑇𝑖𝑗 is the event time for the 𝑗𝑡ℎ subject in the 𝑖𝑡ℎ cluster and 𝑤𝑖′𝑠 are the frailty terms which 

are assumed to be independent and identically distributed with density function 𝑓(𝑤𝑖).The survival 
function for an AFT-shared frailty model at time 𝑡 is expressed as; 

𝑆(𝑡) = 𝑆𝑜
∗[(

𝑡

𝜓𝑖𝑗
)

1

𝜎] = 𝑆𝑜 (
𝑙𝑜𝑔𝑡 − 𝑙𝑜𝑔𝜓𝑖𝑗

𝜎
)                                                                              (33) 

whereby 𝜎 refers to the scale parameter, 𝑆𝑜
∗ is a survival function defined on (0, ∞), and 𝑆𝑜 is the 

baseline survival function that satisfies the relationship 𝑆𝑜
∗(𝜔) = 𝑆𝑜(𝑙𝑜𝑔𝜔), 𝜓𝑖𝑗 is some function 

of the covariates. 𝜓𝑖𝑗 = 𝑒𝑥𝑝(𝜇 + 𝑋′𝑖𝑗𝛽 + 𝑤𝑖). Conditional survival function is given by; 

𝑆𝑖𝑗(𝑡|𝑤𝑖) = 𝑆𝑜 (
𝑙𝑜𝑔𝑡−𝜇−𝑋′𝑖𝑗𝛽−𝑤𝑖

𝜎
|𝑤𝑖)                                                                                     (34) 
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where 𝑆𝑜(. ) is the survival function of 𝜖𝑖𝑗 and 𝜇 is an intercept, 𝛽 is vector of regression 

coefficients, 𝑋𝑖𝑗 is a vector of fixed-effect covariate of the 𝑗𝑡ℎ subject in the 𝑖𝑡ℎ cluster. We assume 

that the frailty term, 𝑤𝑖 follows Gaussian distribution with mean and variance of 𝜇 and 𝜃 

respectively. With 𝜖𝑖𝑗 =
𝑙𝑜𝑔𝑇𝑖𝑗−𝜇−𝑋′𝑖𝑗𝛽−𝑤𝑖

𝜎
, the conditional survival and hazard functions are 

expressed as; 

𝑆𝑖𝑗(𝑡|𝑤𝑖) = 𝑆𝑜(𝜖𝑖𝑗|𝑤𝑖)                                                                                                  (35) 

ℎ𝑖𝑗(𝑡|𝑤𝑖) =
1

𝜎𝑡
ℎ𝑜(𝜖𝑖𝑗|𝑤𝑖)                                                                                              (36) 

respectively, whereby ℎ𝑜(. ) is the hazard function of 𝜖𝑖𝑗. 

Let 𝐺 be the number of clusters, 𝑖 = 1, . . . , 𝐺, and 𝑛𝑖  be the number of subjects within the 𝑖𝑡ℎ 
cluster. The conditional likelihood for the observed data is; 

𝐿𝑐 = ∏ ∏[

𝑛𝑖

𝑗=1

𝐺

𝑖=1

1

𝜎𝑡𝑖𝑗
ℎ𝑜(𝜖𝑖𝑗|𝑤𝑖)]𝛿𝑖𝑗𝑆𝑜(𝜖𝑖𝑗|𝑤𝑖)                                                                 (37) 

Integrating out the unobserved frailties 𝑤𝑖, the marginal likelihood function for all the clusters is 
given by; 

   𝐿𝑚 = ∏ ∫𝐺
𝑖=1 ∏ [

𝑛𝑖
𝑗=1

1

𝜎𝑡𝑖𝑗
ℎ𝑜(𝜖𝑖𝑗|𝑤𝑖)]𝛿𝑖𝑗𝑆𝑜(𝜖𝑖𝑗|𝑤𝑖)𝑓(𝑤𝑖)𝑑𝑤𝑖                                                       (38) 

Estimates of the parameters (𝜎, 𝛽, 𝜃) can be found by maximizing the likelihood function (38). 

Gaussian frailty 

The Gaussian frailty probability density function is given by 

𝑓(𝑤) =
1

√2𝛱𝜎2
𝑒

−
1

2𝜎2(𝑤−𝜇)2

                                                                                          (39) 

whereby 𝜇 is the mean of the distribution, 𝜎 is the standard deviation, 𝑤𝜖(−∞, ∞) and 𝜎2 is the 
variance. Laplace transformation is given by 

𝐿(𝑠) = 𝑒−𝑠𝜇+
𝑠2𝜎2

2                                                                                                                (40) 

Mean and variance can therefore be obtained from the first and second derivatives of the Laplace 
transformation; 

𝐿1(𝑠) = (−𝜇 + 𝑠𝜎2)𝑒−𝑠𝜇+
𝑠2𝜎2

2                                                                                          (41) 

𝐿2(𝑠) = (−𝜇 + 𝑠𝜎2)(−𝜇 + 𝑠𝜎2)𝑒−𝑠𝜇+
𝑠2𝜎2

2 + 𝜎2𝑒−𝑠𝜇+
𝑠2𝜎2

2                                         (42) 

equating 𝑠 to 0, therefore the mean and variance from laplace becomes; 

 

𝐸(𝑊) = (−1)𝐿1(0) = 𝜇                                                                                                  (43) 
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𝑉𝑎𝑟(𝑊) = 𝐿2(0) − (−𝐿1(0))2 = 𝜇2 + 𝜎2 − 𝜇2 = 𝜎2                                               (44) 

Chi-square test 

The Chi-square test is a non-parametric test that is used to determine whether there is an 
association between categorical variables. This test is applied in this context to establish whether 
or not there is an association within clusters. Presence of association within clusters implies 
existence of unobserved heterogeneity, while no association within clusters implies no existence of 
unobserved heterogeneity. The null and alternative hypothesis are stated as; 
 

𝐻0 : 𝑁𝑜 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠         
𝐻1: 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

 
The Chi-square statistic is given by; 
 

𝜒 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
                                                                                                                       (45) 

 
Where 𝑂𝑖 and 𝐸𝑖 refers to the observed data, and expected values respectively. Degrees of 

freedom, which is 𝑑𝑓 = (𝑟 − 1)(𝑐 − 1), where 𝑟 and 𝑐 are the number of rows and columns 

respectively is used to read corresponding critical value at 5% level of significance on a Chi-square 

table. The critical and statistic values are compared, if the statistic value is greater than the critical 

value then it implies that the p-value is < 0.05 hence the  𝐻0 is rejected and conclude that there is 

association within clusters, therefore, there is presence of the unobserved heterogeneity. If the 

statistic value is less than the critical value then it implies that the p-value is > 0.05 hence the  𝐻0 

is not rejected and conclude that there is no association within clusters, therefore, there is no 

presence of the unobserved heterogeneity. 

d. Analysis approach 

The analysis was done using STATA and R statistical software. STATA was used for data cleaning 

purposes, while the R packages survival and randomForestSRC were used for data analysis. 

e. Ethics approval and consent to participate 

We did not require any approval to conduct this study. A full ethics statement on data collection 
and handling of human subjects is given via the link:https://dhsprogram.com/What-We-
Do/Protecting-the-Privacy-of-DHS-Survey-Respondents.cfm 

3.Results and Interpretation 

The results section is structured in two parts. The first part illustrates the variable selection 
exercise, using RSF methodology. Variables are selected based on the variable importance statistic. 
The second part analyses the determinants of U5CM and their effect using AFT models. The 
variables used in the AFT models are those derived from the variable selection exercise based on 
the RSF results.   
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a. Variable selection using Random Survival Forest 

Table 1: Characteristics of the fitted Random Forest for Survival Regression and Classification 
 

Sample size 20354 
Number of deaths 428 
Was data imputed Yes 
Number of trees 1000 
Forest terminal node size 3 
Average number of terminal nodes 290.723 
Number of variables tried at each split 29 
Total number of variables 786 
Analysis Random Survival Forest 
Family Survival 
Splitting rule Log-rank *random* 
Number of random split points 10 
Error rate 0.31% 

 
From Table 1, the characteristics of the RSF model are displayed. The log-rank splitting rule was 

used in the classification. It is worth noting that this model is built using 786 covariates. To identify 

the most important covariates that determine U5CM in Kenya, permutation importance was 

applied to measure variable importance [15, 17, 18]. Results for the ranking of variables according 

to their level of influence on under-five mortality are summarized in table 2. 

 
Table 2: Variable importance (VIMP) based on 1000 trees under log-rank splitting rule 

 
Variable Importance 
Sons who have died 0.0167 
Daughters who have died 0.0112 
Living children + current pregnancy 0.0036 
Sex of child 0.0034 
Duration of breastfeeding 0.0028 
Number of living children 0.0021 
Months of breastfeeding 0.0020 

Variable importance 

Variable importance is used as a means for thresholding variables, since any variable with a VIMP 

less than 0.002 is likely to be noise [17]. Using this rule, the variables found to be having high 

influence on U5CM based on their level of importance are thus displayed in table 2 and these are the 

variables that we have chosen to use as our explanatory variables in the AFT models. 
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b. Summary of Socio-Demographic variables involved in the study 

Table 3: Demographic and socioeconomic characteristics summarized by child survival 

(N= 20, 354 observations) 
 

Variable Mortality, 
 n (percentage mortality) 

Percentage 
(out of N = 20354) 

Sons who have died   
None 18237(0.8) 89.6 
1 son 1775(13.1) 8.7 
2 sons 275(12.4) 1.4 
3 sons 58(12.1) 0.3 
4 sons 7(14.3) 0.0 
5 sons 1(0) 0.0 
6 sons 1(0) 0.0 

Sex of child   
Male 10302(2.3 ) 50.6 

Female 10052(1.9) 49.4 
Births in last five years   

One 9531(1.2) 46.8 
Two 8707(2.4) 42.8 

Three 1999(4.6) 9.8 
Four 107(7.5) 0.5 
Five 10(10) 0.0 

Contraceptives use   
Currently using 9760(1.6) 48.0 

Used since last birth 6233(2.7) 30.6 
Used before last birth 1091(2.8) 5.4 

Never used 3270(2.1) 16.1 
Currently breastfeeding   

No 14841(2.4) 72.9 
Yes 5513(1.2) 27.1 

Living children + current 
pregnancy 

 
 

None 26(100) 0.1 
1 child 3051(2.6) 15.0 

2 children 4618(2.2) 22.7 
3 children 3876(1.8) 19.0 
4 children 2983(1.8) 14.7 
5 children 2075(2.2) 10.2 

6children and above 3725(1.4) 18.3 
Daughters who’ve died   

None 18503(1.1) 90.9 
1 daughter 1580(11.6) 7.8 
2 daughters 212(17) 1.0 
3 daughters 44(20.5) 0.2 
4 daughters 14(21.4) 0.1 
5 daughters 1(0) 0.0 
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Variable Mortality, 
 n (percentage mortality) 

Percentage 
(out of N = 20354) 

Region   
Coast 2565(2.2) 12.6 

North eastern 1556(1.7) 7.6 
Eastern 2930(1.6) 14.4 
Central 1371(1.7) 6.7 

Rift valley 6651(1.5) 32.7 
Western 1926(2.8) 9.5 
Nyanza 2845(3.7) 14.0 
Nairobi 510(3.1) 2.5 

 
Table 3 displays the distribution of deaths of the under-five children at each factor level included in 

the analysis. It shows that among mothers who had male children, out of 10,302 children born, 2.3% 

died before their fifth birthday.  Of the 10,052 female children born, 1.9% of them died before the 

5th birthday. The table has also summarized the distribution of deaths and births of children for the 

rest of the covariates considered involved in the study. 

c. Modeling for determinants using AFT model and its variants 

Data analysis was done using four AFT-models; Exponential, Weibull, Lognormal, and Log-

logistic distributions. The four models were checked for the parametric model assumptions 

(including assumptions such as linearity of covariates, normality of residuals, covariate 

independence among others), using residual plots. The predictive model assumptions were 

met fairly well [19]. The results from Log-logistic AFT model were reported since the model 

had the least Akaike Information Criterion (AIC) statistic. 

Table 4: AIC values of the AFT and AFT-shared frailty models (Community and household) 

Baseline 
distributions 

No frailty Gaussian Frailty 
Community Household 

AIC AIC AIC 
Exponential 2630.088 2487.14 2471.722 
Weibull 2566.057 2568.274 2696.672 
Log-logistic 2462.352 2485.497 2461.255 
Lognormal 2499.53 2508.123 2501.959 

Table 4 shows results from the AIC values of the AFT and AFT-shared frailty models. We have 

assumed Exponential, Weibull, Log-logistic and lognormal distributions for baseline, while the 

frailty distribution is the Gaussian. The AIC values of the different AFT, and AFT models with 

Gaussian shared frailty model are displayed in table 4 for community and household clusters 

respectively. The AIC values of Log-logistic AFT, and Log-logistic AFT with Gaussian frailty model 

have been found to be minimum among all other considered models in all cases, indicating that it 

is the most efficient model.  

The results of Log-logistic AFT and Gaussian shared frailty model with Log-logistic baseline 
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distribution has been displayed in table 5. The estimated coefficients, p-values, parameter 

estimates of baseline distributions and frailty variance have also been displayed in table 5.  

The Log-logistic AFT-model shows that i) the sons who have died, ii) daughters who have died, iii) 

duration of breast feeding and months of breastfeeding, were found to be having significant 

influence on the under-five mortality (p<0.05). Increase in the number of sons and daughters who 

have died in the households reduced the risk of death. Sex of child, number of living children, and 

living children plus current pregnancy were found to be non-significant factors for child mortality. 

Based on a chi-square test on a null hypothesis that the variance of the community frailty term 

is zero (θ = 0), the test statistics yielded a p-value of 0.028. At 5% level of significance, it means 

that there was enough evidence of existence of unobserved heterogeneity at community level. 

This implies that there are other factors affecting under-five child mortality at community level 

that are not explained by the observed covariates included in the model. The sources of the 

unobserved heterogeneity at the community level may be attributed to access to food and 

probably other factors that cannot be easily measured at community level. This is an area that 

needs further research in order to explain the reasons for unobserved heterogeneity at 

community level. 

In the case of household frailty term, the test statistic returned a p-value of 0.28. At 5% level of 

significance, this implies that there was not enough evidence to show the existence of unobserved 

heterogeneity at household level. This statement means that the survival times of children under 

the age of five within the same household can be well explained by the observed covariates 

considered in the study without the inclusion of household frailty term. In this scenario one can 

apply Log-logistic AFT-model without frailty since the outcome suggests that there is no difference 

on the conclusions that would be drawn. 

Table 5: AFT and AFT-shared frailty models for the under-five mortality 

 Log-logistic 
(no frailty) 

Log-logistic(G) 
(community) 

Log-logistic(G) 
(household) 

Parameters Beta P-value Beta P-value Beta P-value 

Intercept 4.6843 0.000 4.0527 0.000 4.3908 0.000 
Sons who have died -1.9436 0.000 -1.4136 0.000 -1.6941 0.000 
Daughters who’ve died -1.6536 0.000 -1.2341 0.000 -1.4572 0.000 
Sex of child       
Male Ref  Ref  Ref  
Female 0.3298 0.132 0.2739 0.067 0.3015 0.110 
Number of living children 0.4986 0.125 0.3587 0.110 0.4347 0.120 
Living children+ 0.0516 0.873 0.0388 0.860 0.0439 0.870 
Duration of breastfeeding 0.2275 0.000 0.1713 0.000 0.2011 0.000 
Months of breastfeeding -0.0402 0.002 -0.0317 0.001 -0.0364 0.001 
Frailty    0.028  0.280 
Variance   0.717  0.337  
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4. Discussion 

The study of U5CM is crucial especially in the Low and Middle-Income Countries including Kenya 
because of the relatively high rates. Kenya has however witnessed a significant decline in under-
five child mortality recently, except that this rate is still higher than the globally targeted figures 
for U5CM of less than 33 deaths per 1000 births [4]. In this paper, an effort has been made to 
determine the possible determinants of the under-five child mortality in Kenya using Random 
Survival Forest and Accelerated Failure Time (AFT)-shared frailty models. The Random Survival 
Forests is a machine learning algorithm that was used to conduct variable selection. The Accelerated 
Failure Time models were fit using the selected variables and used to determine the effect of the 
covariates.  

Random Survival Forests has increasingly become popular alternative way for analyzing time to 
event data [20]. This approach provides a classification algorithm that enables establishing 
which variables have an influence on the mortality outcome. The method is robust to deviations 
from statistical assumptions that bog parametric models. In this study, this approach was used 
to identify and select important covariates to U5CM based on variable importance. Other 
methods of variable selection exist in literature including methods for variable selection in 
Partial Least Squares Path Models [29], Bayesian variable selection methods [30], and many 
other variable selection approaches [31]. In this context for event time outcome data, covariates 
such as i) number of living children, ii) living children plus current pregnancy, and iii) sex of child 
emerged as important covariates in explaining the under-five child mortality in Kenya. However, 
these covariates did not appear to be significantly associated with the under-five child mortality 
rate   in the AFT model. Random Survival Forest is fully non-parametric whereas AFT model is 
fully parametric.  

Our study considered two levels of clustering, including community and household levels. 

Gaussian shared frailty assuming a Log-logistic baseline distribution was used to estimate effect 

of risk factors on child survival. In understanding the determinants of U5CM using shared frailty 

model [13], a study conducted in Uganda found out that there was existence of unobserved 

heterogeneity at household level but there was no enough evidence to conclude existence of 

unobserved heterogeneity at community level. A study on infant mortality in India it was found 

that there was presence of unobserved heterogeneity both at individual and community levels. 

In the same study, it was also established that child mortality was higher among women married 

before 18 years of age compared to those married after 17 years of age [14]. The output of the 

shared frailty model was compared to the output of the model without frailty, and the results 

were that there was no presence of the unobserved heterogeneity at household clusters. On 

the other hand, there was presence of the unobserved heterogeneity at the community level. 

Similar results to our study was also reported elsewhere [28], however [13, 27] which found out 

that there was presence of the unobserved heterogeneity at household level. Their findings 

could be attributable to the fact that country dynamics differ. These studies may have disagreed 

with ours as they were conducted in different countries and at different time settings. 

In this study, variables relating to siblings and mother characteristics were key determinants of 

U5CM. i) Sons who have died, ii) daughters who have died were some of the factors associated 
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with decreased risks of death in Kenya. In a similar study conducted using DHS data in Uganda, 

parent characteristics, sibling/mother characteristics were found to have an effect on U5CM. 

The study identified the following factors among others: i) sex of the household head, ii) sex of 

the child, and iii) number of births in the past one year were found to be having significant 

influence on U5CM [13].  

The problem of high dimensional data especially associated with DHS datasets possess a big 

challenge to many statistical analysis approaches. One such problem is the issue of variable 

selection. It may not be possible to use over 700 variables in a predictive model and still make 

sense of the effect of important covariates. Random Survival Forest provided an effective 

approach to the problem of variable selection, through variable importance. With RSF, 

classification of risks factors for the under-five child mortality was accomplished through 

variable importance ranking. 

5. Conclusions 

Our study found out that breastfeeding and sibling/mother characteristics were key determinants 
of U5CM. Variables such as  

i. sons who have died,  

ii. daughters who have died,  

iii. duration of breastfeeding, and  

iv. months of breastfeeding  

were strongly associated with U5CM from both Random Survival Forest model and the AFT model.  

As far as clustering is concerned, it was also found out that there was presence of unobserved 

heterogeneity at community level, implying that there are other factors affecting U5CM at 

community level other than those explained by the observed covariates that were included in the 

model. On the other hand, there was no presence of the unobserved heterogeneity at household 

level, implying that the survival times of children under the age of five within the same household 

can be explained by the observed covariates that were considered in the study. 

Due to the high dimensionality of the DHS datasets, variable selection problem is often faced while 

conducting an analysis based on such data. Random Survival Forest came in handy for classification 

of variables that were later on used in the AFT model for parameter estimation. 

These findings do suggest that health care interventions could focus on communities and not 

necessarily at household level, in order to achieve outcomes on a wider scale. The heterogeneity 

across communities seems to play a dominant role in determining U5CM. Such disparities could be 

associated with socio-economic differences, including eating habits, religious inclinations, socio-

political inclinations, education levels among other factors.  
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