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 Accurate and fast modelling and simulation of Photovoltaic module 
requires careful determination and identification of the unknown 
parameters required in fitting the voltage-current and power-voltage 
curves to replicate an actual system. The main objective of this study is to 
determine ideality factor (A), saturation current (Io), photocurrent (Iph), 
series resistance (Rs) and shunt resistance (Rsh), the five unknown 
parameters using Isc, Impp, Vmpp, and Voc available from manufacturer's 
datasheet. A single diode equivalent circuit has been used to formulate a 
simple method for evaluating ideality factor (A), saturation current (Io) and 
photocurrent (Iph) by first assuming that the photovoltaic array has 
negligible series resistance (Rs) and infinite parallel resistance (Rsh). 
Additional analysis of series and parallel resistance have been carried out 
for fine tuning the voltage-current and power-voltage curves to fit the 
experimental data. The model presented in this work has been simulated 
using the GNU Octave open-source software. The photovoltaic modules 
with International Electrotechnical Commission (IEC) 61215 standards have 
been selected from Solarex-MSX60, BP- SX150 and Kyocera-KK280P. The 
extracted parameters produced results for the output power with an error 
of less than 0.5% for all the modules.           
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1.  Introduction 

Photovoltaic solar arrays have played a significant role as a source of renewable energy 

[1]. Modelling and simulation of these solar modules prior to implementation in a solar 

plant are important for designing reliable and efficient systems [2]. Solar array models 

require elaborate definitions of several parameters that greatly influence the optimization 

of their efficiency. 
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A single diode equivalent circuit offers a simple and easy to implement model that 

produces simulated data that matches the experimental data or the information provided 

in the manufacture’s datasheet. [3–7]. The single diode model requires precise evaluation 

of Isc, Io, Impp, Iph, A, Rs, Rsh, Voc and Vmpp. The data sheet provides Isc, Vmpp, Impp and Voc, 

the four crucial parameters that are essential for evaluation of its performance at STC. 

These parameters can be used as the optimum operating points for characterization of the 

system [8]. The other parameters should be determined in order to have an ideal model 

that matches the datasheet information. Different mathematical techniques have been 

reported to determine the five unknown parameters [5, 9, 10]. A datasheet-based 

approach has been applied to iteratively determine the Io, Iph, Rs and Rsh where ideality 

factor was arbitrarily chosen and gradually adjusted to tune the PV curve, making the 

technique tedious and time consuming [11]. In this work we propose to determine the 

ideality factor and the diode saturation current parameters to coarse tune the PV curve at 

STC. The Iph, Rs and Rsh can thereafter   be estimated to fine tune the curves. 

Models based on manufacturers’ data offer an affordable and quick method of 

characterization of the PV solar array.   Their main drawback is that the data is available at 

STC and experimental procedures must be performed in order to obtain data at various 

environmental conditions [12]. The experimental procedure requires equipment for room 

temperature controls, generation of different irradiance levels, current and voltage 

measurements. The main purpose of this study is to develop a simple algorithm for 

modeling a solar module using an equivalent circuit with a single diode. The algorithm 

interactively determines the unknown parameters of a diode model for solar modules that 

have datasheet information at STC and other environmental condition at 800W/m2 with 

nominal operating cell temperature (NOCT). 

 

2. A Single Diode Equivalent Circuit 

Figure 1 shows the single diode equivalent circuit. The light generated current source is 

connected in series to Rs and in parallel to both the diode and shunt resistor.   

          

 
      

                                              
 

 

Figure 1: A Single Diode Equivalent Circuit 
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Using Kirchhoff’s current and voltage laws, we relate  
𝐼𝑝ℎ  − 𝐼𝐷  =  𝐼𝑅𝑠ℎ  +  𝐼𝑅𝑠

. (1) 
 

and the output voltage (V) can be given as 

𝑉 = 𝑉𝑝ℎ − 𝑉𝑅𝑠   =  𝑉𝑅𝑠ℎ
− 𝑉𝑅𝑠  = 𝑉𝐷 – 𝑉𝑅𝑠. (2) 

The Shockley’s diode equation [13] for current-voltage characteristic gives ID as 

𝐼𝐷 = 𝐼𝑜𝑒𝑥𝑝
𝑞𝑉𝐷

𝐴𝑘𝑇
− 𝐼𝑜. (3) 

 
Combining the three equations (1-3) and taking I = IRs and VD = VRsh = V + IRs, we can 

write the P-V single diode model equation as follows 

 

𝐼 =  𝐼𝑅𝑠
= 𝐼𝑝ℎ  − 𝐼𝐷 − 𝐼𝑅𝑠ℎ

= 𝐼𝑝ℎ − 𝐼𝑜𝑒𝑥𝑝
𝑞(𝑉+𝐼𝑅𝑠)

𝐴𝑘𝑇
+ 𝐼𝑜 −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
. (4) 

 
Where, q charge of an electron and k is the Boltzmann’s. 

3. Mathematical Modelling of Photovoltaic Panel Using Manufacturers’ Data 

Information provided in the manufacturer’s datasheet can be used to solve equation (4) 

by making a few assumptions of known facts. We assume that the solar module has 

identical solar cells in series (Ns) and that the connection between the metal grid and the 

n-substrate, the p-n junction and the connection between the p-substrate and the metal 

base offer very little series resistance (Rs). In addition, the shunt resistance (Rsh) which 

depends on the design of the solar module has very high values. Therefore, we can first 

disregard the Rs and Rsh in equation (4), which gives us the optimum values for other 

parameters. Rs and Rs will however be reconsidered later for different ideal factor values. 

Thus, equation (4) can be written as 
 

𝐼 = 𝐼𝑝ℎ + 𝐼𝑜 − 𝐼𝑜𝑒𝑥𝑝
𝑞𝑉

𝐴𝑘𝑇
. (5) 

 

We also assume that the short circuit current Iph is equivalent to Isc and I = 0 at open 

voltage.  These assumptions can be implemented in equation (5) to get 
 

𝐼𝑠𝑐 = 𝐼𝑜𝑒𝑥𝑝
𝑞𝑉𝑜

𝐴𝑁𝑠𝑘𝑇
− 𝐼𝑜. (6) 

 

Taking logarithms on either side of equation (6), gives 

 

𝑙𝑛(𝐼𝑠𝑐 − 𝐼𝑜) − 𝑙𝑛(𝐼𝑜) =
𝑉𝑜

𝐴𝑁𝑠𝑉𝑡
. (7) 

 

Where, Vt = kT/q is the thermal voltage. 
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Again, at maximum power point, we can rewrite equation (5) as 
 

𝐼𝑚𝑝𝑝 = 𝐼𝑠𝑐 + 𝐼𝑜 − 𝐼𝑜𝑒𝑥𝑝
𝑉𝑚𝑝𝑝

𝐴𝑁𝑠𝑉𝑡
 . (8) 

 

Also, 
 

𝑙𝑛(𝐼𝑠𝑐 + 𝐼𝑜 − 𝐼𝑚𝑝𝑝) − 𝑙𝑛(𝐼𝑜) =
𝑉𝑚𝑝𝑝

𝐴𝑁𝑠𝑉𝑡
. (9) 

Finally, we can derive the ideality factor from equations (7) and (9) in terms of Impp, Isc, 

Voc and Vmpp as 
 

𝐴 =
𝑉𝑜𝑐−𝑉𝑚𝑝𝑝

𝐴𝑁𝑠𝑉𝑡[𝑙𝑛(𝐼𝑠𝑐)−𝑙𝑛(𝐼𝑠𝑐−𝐼𝑚𝑝𝑝)]
. (10) 

 

The flowchart given in Figure 2 shows the algorithm used in this work. Several steps are 

taken systematically to evaluate and check the different parameters that are lacking for 

the model.  

 First, the Isc, Impp, Vmpp and Voc values are 

chosen from the datasheet or experimental 

results of the module.  

 Second, the optimal ideality factor (Ao) is 

calculated using equation (11).  

 Third,  Ao is used to calculate the saturation 

current using equation (12).  

 Fourth, the Rs and Rsh are iteratively 

extracted by varying the series resistance 

from zero to 1Ω using equation (14) as 

shown in Figure 3.  

 Fifth, new values of A are used to 

recalculate Io.  

 Sixth, the values of A, Io, Rs and Rsh are 

used to calculate Iph.  

 Seventh, all the calculated parameters are 

used in equation (21) to determine the 

current-voltage and power-voltage 

relationships. 

 

 

 

Figure 2: An algorithm for plotting IV and PV curves and evaluating the A, Io, Iph, Rs, 

Rsh using Isc, Impp, Vmpp and Voc 
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 Eighth, the simulated output power values (Pmpp(Sim)) are compared to the 

datasheet or experiment value (Pmpp(expt)). This process is repeated until Pmpp(Sim) 

≈ Pmpp(expt). 

 Finally, the I-V and P-V curves are plotted and evaluated to validate the entire 

process. 

4. Analysis of Ideality Factor(A) and Saturation Current (Io) 

The ideal factor linearly depends on the saturation current values between 0 and 0.3A, as 

depicted in equation (10) and as shown in Figure 2. The saturation current range has been 

arbitrarily chosen between 0 and 0.3A for initial proof of principle. To determine the 

dimension of optimum ideality factor (Ao) accurately, we have assumed that the saturation 

current is negligible in relation to both Isc and Impp. Therefore, the threshold ideality factor 

can be determined using 

 

𝐴 =
𝑉𝑜𝑐−𝑉𝑚𝑝𝑝

𝐴𝑁𝑠𝑉𝑡[𝑙𝑛(𝐼𝑠𝑐)−𝑙𝑛(𝐼𝑠𝑐−𝐼𝑚𝑝𝑝)]
 . (11) 

The saturation current can be estimated by rearranging equation (6) to get 

 

𝐼𝑜 =
𝐼𝑠𝑐

𝑒𝑥𝑝(
𝑉𝑜𝑐

𝐴𝑁𝑠𝑉𝑡
)−1

 . (12) 

5. Analysis of Series and Parallel Resistance 

The series and parallel resistances can be determined by re-evaluating equation (4) using 

values of A, Io, Impp and Vmpp at a maximum power point. This will yield,  

 

  𝐼𝑚𝑝𝑝 = 𝐼𝑝ℎ + 𝐼𝑜 − 𝐼𝑜𝑒𝑥𝑝 (
𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝𝑅𝑠

𝐴𝑁𝑠𝑉𝑡
) −

𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝𝑅𝑠

𝑅𝑠ℎ
. (13) 

 

Assuming Isc≈Iph, equation (13) can be reorganized to give 
 

𝑅𝑠ℎ =
𝑉𝑚𝑝𝑝−𝐼𝑚𝑝𝑝𝑅𝑠

𝐼𝑝ℎ−𝐼𝑚𝑝𝑝−𝐼𝑜(𝑒𝑥𝑝(
(𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝𝑅𝑠)

𝑛𝑁𝑠𝑉𝑡
)−1)

   . (14) 

 

An iterative evaluation of series and parallel resistance shows that there are positive 

values of Rsh for A> Ao as Rs increases from zero as illustrated in Figure 3 

6. Analysis of Photocurrent (Iph) 

The photocurrent can be evaluated by making similar assumption at short circuit point, 
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where I = Isc and V=0. Applying this assumption in equation (4), we can deduce 

 

𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼𝑜𝑒𝑥𝑝
𝐼𝑠𝑐𝑅𝑠

𝐴𝑁𝑠𝑉𝑡
+ 𝐼𝑜 −

𝐼𝑠𝑐𝑅𝑠

𝑅𝑠ℎ
 . (15) 

 

On the right hand side of equation (15), the second and third terms have very small 

currents in the range of Nano- or micro-amperes, whereas the first and fourth terms are 

in amperes. Therefore, the second and third terms can be ignored and after 

rearrangement, we can rewrite equation (15) as 

 

𝐼𝑝ℎ = 𝐼𝑠𝑐 +
𝐼𝑠𝑐𝑅𝑠

𝑅𝑠ℎ
 . (16) 

 

Equations (1) to (16) can be tested by applying values of Isc, Voc, Impp and Vmpp, which are 

readily available from the module’s datasheet under nominal test conditions of 1.5 air 

mass, 1000W/m2 and 298.15K. 

7. Analysis of output power (P) 

The output power can be determined by simply multiplying the output voltage and the 

output current of equation (4) as 

 

𝑃  =  𝑉𝐼 =  𝑉 (𝐼𝑝ℎ + 𝐼𝑜 − 𝐼𝑜𝑒𝑥𝑝 (
𝑉  + 𝐼𝑅𝑠 

𝐴𝑁𝑠𝑉𝑡
) −

𝑉  

𝑅𝑠ℎ
−

 𝐼𝑅𝑠

𝑅𝑠ℎ
) . (17) 

 

Table 1 summarizes the data sheet values for Solarex MSX60, BP SX150 and Kyocera 

KK280P in nominal test environment, their respective simulated data and derived 

parameter values for A ≈Ao, Io, Iph, Rs and Rsh. 

Table 1: Datasheet values for MSX60, BP SX150 and KK280P at STC and NOCT for KK280P 

 Voc [V] Vmpp [V] Ns Isc [A] Impp [A] Ao Io [A] Pmpp [W] ∆Pmpp% 

MSX60 21.1 17.1 36 3.8 3.5 1.7034 5.80E-6 59.56 -0.48 
BPSX150 43.5 34.5 72 4.75 4.35 1.9663 3.04E-5 150.13 0.04 
KK280P 38.9 31.5 60 9.53 8.89 1.7775 6.51E-6 280.36 0.12 

 

Figure 3 shows the Solarex MSX60, BP SX150 and Kyocera KK280P Rsh versus Rs curves. 

These plots have been used to verify the choice of Rs and Rsh values as described in 

algorithm step 4. 
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Figure 3: A graph of Rsh Vs Rs for MSX60, BP SX150 and Kyocera KK280P 
 

The proposed model was tested using the P-V characteristic curves shown in Figure 4 at STC. 

They demonstrate the values of Rs for different ideality factors starting with the optimum 

ideality factor (Ao). The curves converge at Voc but differ significantly at Pmpp  due to the 

different values of A, Io, Iph, Rs  and Rsh  given in Table 2.  Table 2 shows the data from 

this model, which provides satisfactory results for Rs and Iph in comparison with data in[14]-

[18]. However, other parameters differ due to the different choices of ideality factor. 

Table 2: Extracted five parameters 
MSX60 
Our Method 

     
Ref. [14] 

 
Ref. [15] 

 
Ref. [16] 

A 1.7034 1.74 1.76 1.78 1.27 1.404 1.277 
Io(A) 5.80E-06 7.69E-06 8.92E-06 1.03E-05 5.95E-08 3.29E-07 6.45E-08 
Rs(Ω) 1.1E-05 0.104 0.154 0.212 0.234 0.169 0.2165 
Rsh(Ω) 121330 22263 3220 3554 9 638 275 
Iph(A) 3.8 3.8000 3.8002 3.8002 3.8000 3.8010 3.8130 
BP SX150 
Our Method 

     
Ref. [15]  

 
Ref. [17] 

 
Ref. [18] 

A 1.9663 1.98 2 2.02 1.4851 1.64 1.642 
Io(A) 3.04E-05 3.30E-05 3.72E-05 4.18E-05 6.17E-07 2.80E-06 2.84E-06 
Rs(Ω) 0.00011 0.048 0.121 0.211 0.4543 0.31256 0.3315 
Rsh(Ω) 268260 9606 4907 12747 960 1799 4368 
Iph(A) 4.7500 4.7500 4.7501 4.7501 4.7522 4.7508 4.7500 
KK280P 
Our Method 

       

A 1.7775 1.8 1.84 1.88 - - - 
Io(A) 6.51E-06 7.77E-06 1.05E-05 1.41E-05 - - - 
Rs(Ω) 0.000011 0.038 0.123 0.201 - - - 
Rsh(Ω) 164640 2257 9608 4962 - - - 
Iph(A) 9.53 9.5302 9.5301 9.5304 - - - 
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Figure 4: A graph of Power against Voltage for (a) MSX60 (b) BP SX150 and (c) KK280P 
 

Conclusion 

A new, simple and robust method has been derived and tested to determine ideality factor 

(A), saturation current (Io), photocurrent (Iph), series resistance (Rs) and shunt resistance 

(Rsh) of a single diode equivalent circuit for modeling a photovoltaic solar system based on 

the data sheet values. This new algorithm gave output power of 59.56  0.29W for MSX60, 

150.13  0.13W for BP SX150 and 280.36  0.33W for KK280P.  

The output power generated from the new algorithm agrees with the value available from 

the modules’ data catalog within 0.5 percent error at the maximum power point. The new 

approach can be used for quick evaluation of a PV array prior to implementation of 

maximum power point tracking techniques. The straightforward mathematical analysis of 

a PV array based on manufacturers’ data reported in this paper makes it possible to easily 

analyze and design a PV plant prior to its implementation. 
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