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 Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids produced by 
archaea (isoprenoid GDGTs - iGDGTs) and bacteria (branched GDGTs - brGDGTs) 
in terrestrial and aquatic settings. Our study examines the relationship between 
GDGT distribution and environmental parameters in soils collected along Mt. 
Kenya to examine their applicability as paleotemperature and paleoelevation 
proxies. Both global and regional calibrations were tested on our dataset. 
brGDGT-derived temperature for Mt. Kenya linearly correlates with altitude and 
is consistent for all the calibrations although the derived temperature lapse rate 
(0.53 °C/100 m) along the mountain from the global soil calibration by [1] is 
consistent with gridded climate data (0.52°C /100 m) along this transect. This 
lapse rate is lower than the regional estimate of 0.70°C /100 m previously 
obtained in other altitudinal gradients (Mt. Rungwe and Mt. Kilimanjaro) from 
the same region. Although brGDGTs are considered as a robust paleoelevation 
proxy regionally, individual site performances may be unique to their 
environmental setting, geographic location and altitude. In addition, a poor 
linear correlation between altitude and iGDGT-derived TEX86, a rarely 
investigated proxy in soils, implies that there are many other factors not 
investigated here that affects its applicability in tracking temperature changes 
along altitudinal transects. 
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1. Introduction 
 
Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids of both archaeal and bacterial 

origin containing two long alkyl chains attached to glycerol moieties at both ends. They are found 

in a wide range of environments such as marine and lacustrine sediments [2], [3], soils [1], [4], 

peatlands [5], [6], water columns [2], [7] and speleothems [8]. GDGTs exhibit a large diversity in 

their carbon skeletal compositions but two main classes have been identified, namely isoprenoid 

GDGTs (iGDGTs) and branched GDGTs (brGDGTs). Isoprenoid GDGTs (iGDGTs) are produced by 

archaea with structures differing by the number of cyclopentane moieties in the alkyl chains (from 

0 to 4; see Figure 1). GDGT – 0 is sometimes referred to as caldarchaeol and is the most common 

iGDGT detected of the archaeal phyla [9] while crenarchaeol which consists of 4 cyclopentane rings 

with an additional cyclohexane moiety (Figure 1; [9], [10], [10] is thought to be specific to phylum 

Thaumarchaeota even though it has been suggested that it could be produced by Marine Group II 

Euryarchaeota. The crenarchaeol possesses a regio isomer (i.e. asymmetric carbon in the 

cyclohexane structure) called the crenarchaeol regio isomer that is present in significant amounts 

in natural samples [12]. 
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Figure 1: Structures of isoprenoid GDGTs (iGDGTs) and branched (brGDGTs). iGDGT nomenclature (iGDGT-
x) is derived from the presence of cyclopentyl moieties in the alkyl chains, where x represents the number 
of cyclopentane moieties. The structure of brGDGT displays the presence of the cyclopentane moieties, 
and a basic structure containing methyl (four to six) branches. IS represents the C46 synthesized internal 
standard. 

 

In contrast to the iGDGTs, brGDGTs are lipids of bacterial origin whose stereoconfiguration from 

NMR characterisation is opposite to that of iGDGTs (Figure 1; [13]). Little is known about their 

sources and biosynthesis although they display a huge abundance in water logged areas such as 

peats hence the suggestion that they are produced by anaerobic bacteria [14]. Although more 

studies are needed to constrain the source of these micro-organisms Acidobacteria might be 

possible producers of the brGDGTs [14]. The ubiquity of brGDGTs in terrestrial environments has led 

to its utility in estimating catchment processes largely linked to soil organic matter presence in 

different environments. [15] developed a Branched to Isoprenoid Tetraether (BIT) Index to estimate 

terrestrial inputs into the aquatic environments. The index, based on the ratio of brGDGT and 

crenarchaeol, assumes that brGDGTs are produced exclusively by soil bacteria and crenarchaeol only 

by aquatic Thaumarchaeota [9] however, recent studies suggest that brGDGTs and crenarchaeol are 

also produced in situ in aquatic environments and soils respectively [3], [13], [16] challenging the 

applicability of this index.  

 

The controlling factors that affect the relative abundance of the brGDGTs in soils was first 

investigated by [4] from 130 soils collected globally. These authors showed that structural 

differences in brGDGTs were found to correlate with pH and air temperature. The corresponding 

relationships were expressed as follows: (i) The average number of cyclopentyl moieties displays a 

positive correlation (R2 = 0.70) with soil pH through the cyclization index of brGDGTs (CBT) and (ii) 

The number of methyl branches positively correlates (R2 = 0.62) with Mean Annual Air Temperature 

(MAAT) and to a lesser extent with soil pH (R2 = 0.37) through methylation of brGDGTs (MBT). In an 

aim to improve the accuracy of the MBT/CBT proxy [1] added 126 new soil surface samples to [17] 
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global dataset. This led to the development of a new calibration based on MBT’ that excluded 

brGDGT-IIIb and brGDGT-IIIc (Figure 1) from the MBT relationship as they were frequently below the 

detection limit and comprised <1% of the total brGDGTs on average [1]. These relationships 

advanced the use of the brGDGTs as a paleoelevation proxy along different altitudinal transects [3], 

[18], [19] [20] [20].  

 

Analytical uncertainties and discrepancies arising from the application of GDGT-derived proxies in 

the modern environments [22] [23] has led to the recognition that other environmental parameters 

than temperature/pH may also have an influence on GDGT distribution. The recent improvement in 

analytical separation of brGDGTs and subsequent detection of additional isomers of brGDGTs (with 

methyl groups at either position 5 or 6, referred to as 5- and 6-methyl brGDGT isomers) slightly 

improved the accuracy of temperature reconstruction based on these lipids [24]. The application of 

this new methodology on previous samples from the global datasets of [1] and [17] have shown that 

the fractional abundance of the 6-methyl brGDGTs is highly correlated to pH and thus the source of 

pH dependence of the MBT’ [24]. This led to the exclusion the 6-methyl isomers from the MBT’ 

allowing a reconstruction of MAAT based only on 5-methyl brGDGTs which is not influenced by pH 

[24]. Although we acknowledge the interest of this new analytical method for the separation of 

brGDGT isomers, iGDGTs and brGDGTs in our samples were analysed using the original method 

based on cyano column [1]. 

 

In East Africa, a regional calibration between MBT/CBT and mean annual air temperature (MAAT) 

was developed by [25] using soil samples collected along Mt. Rwenzori (Uganda; Loomis et al. 2011), 

Mt. Rungwe (Tanzania; [20]), Mt. Kilimanjaro (Tanzania; [18]) and Mt. Kenya (Kenya). This calibration 

improved both the strength of the correlation (R2 0.77) and the accuracy of the MAAT reconstruction 

(Root Mean Square Error – RMSE – 2.4 °C) compared to the global soil calibration by [1] (R2 0.56 and 

RMSE 4.2 °C). This is likely due to the fact that regional environmental parameters such as the 

physical and chemical soil properties or the precipitation regime affect the performance of the 

reconstructions. In any case, this study showed the robustness of the MBT/CBT proxy in East Africa.  

 

In this study, the concentration and relative distribution of brGDGTs and iGDGTs were determined 

in soils collected along the north eastern slopes of Mt. Kenya between 1800 m asl and 3268 m asl 

(Figure 2). Located at the equator, the mountain exhibits a wide range of ecological and climatic 

zones based on the changes in rainfall and elevation [26], [27]. Precipitation on the mountain 

increases with altitude until about 2500 m asl above which a decline in the amount of rainfall is 

observed similar to other East African Mountains [26], [28]. A decline in temperature from the 

foothills to the nival zone is observed with diurnal daily variations [29]. Although there are no 

marked seasonal temperature variations a strong altitudinal gradient of up to 1°C per 100 m has 

been suggested [29], [30]. The aim of this study is to investigate the applicability of the MBT/CBT 

and TEX86 indices as distinct and complimentary paleotemperature and paleoelevation proxies on 

the mountain. 
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Figure 2: Maps showing the location of Mt. Kenya in Kenya (a,b) and the study area on the north-eastern 
flanks of Mount Kenya. 
 

2. Materials and Methods 
 

2.1 Sample collection 
 
27 surface soil samples (within the upper surface 0-5cm) were collected during two field campaigns 
carried out in 2011 and 2013 along an altitudinal transect (1800 m – 3268 m asl) on the North Eastern 
slopes of Mt. Kenya (Figure 2; Error! Reference source not found.). These samples were preserved 
in resealable plastic bags and initially stored in the cold room at the University of Nairobi and the 
soil storage facility at ICRAF Soil and Plant laboratories at 4.0 °C for 2 weeks after which they were 
transported to the IRD laboratory in Bondy, France in 2011 and METIS laboratory in Sorbonne 
Université, Paris, France. 
 

2.2 Sample preparation 
 
For each sample, twenty grams of soils were oven dried at 40°C for 48hrs and then extracted by 
Accelerated Solvent Extraction (Dionex ASE 100, ThermoFisher) using a 9:1 
dichloromethane/methanol solvent mixture [20]. Each sample was extracted three times at 100°C 
and under 100 bar pressure. The extracted lipids were dried under vacuum using a rotary evaporator 
in a water bath maintained at room temperature. The separation of the total lipid extracts into polar 
and apolar fractions was carried out using a column filled with activated Al2O3 (put in the oven at 
150°C for two hours before use). The elution was performed with two mixtures of solvents: n-
heptane: DCM (9:1, v/v) for the apolar fraction and DCM:MeOH (1:1, v/v) for the polar fraction. The 
separated fractions were dried by rotary evaporation. These samples were transferred to four ml 
vials using DCM, after which they were dried under N2 gas and dissolved in 1 mL hexane prior to 



OMUOMBO et al.                        |GEOLOGY 

130 
 

analysis. 
 

Table 1: Sample information (Sample No, Altitude and coordinates), the total organic carbon content (% 
Corg) and relative abundances of the total GDGTs total (µg/g) and relative (%) GDGTs. 

No. 
Altitude 
(m asl) Coordinates 

Corg  
(%) 

brGDGT µg/g  
Corg 

iGDGT µg/g  
Corg 

brGDGT 
(%) 

iGDGT 
(%) 

1 1800 -0.82 36.97 2.1 5.85 1.21 82.9 17.1 

2 1800 -0.82 36.97 3.1 15.10 1.59 90.5 9.5 

3 1823 0.11 37.60 3.6 4.06 0.95 81.0 19.0 

4 1847 0.11 37.59 21.4 7.68 1.57 83.0 17.0 

5 1847 0.11 37.59 4.4 8.15 1.47 84.7 15.3 

6 1847 0.11 37.59 4.7 3.79 1.01 79.0 21.0 

7 1897 0.04 37.60 2.6 8.34 0.99 89.4 10.6 

8 2027 0.04 37.58 3.2 8.76 0.34 96.3 3.7 

9 2052 0.14 37.48 1.3 7.24 1.71 80.9 19.1 

10 2097 0.14 37.47 1.4 4.86 1.09 81.7 18.3 

11 2130 0.04 37.56 2.8 6.16 0.66 90.4 9.6 

12 2189 0.13 37.46 2.7 5.28 1.98 72.7 27.3 

13 2258 0.03 37.55 2.0 2.37 0.26 90.2 9.8 

14 2318 0.04 37.54 4.3 4.14 0.08 98.1 1.9 

15 2323 0.12 37.45 1.2 4.66 3.52 57.0 43.0 

16 2350 0.05 37.53 15.2 11.11 0.54 95.4 4.6 

17 2500 0.08 37.48 5.4 2.93 0.65 81.9 18.1 

18 2642 0.06 37.47 20.0 15.79 0.70 95.8 4.2 

19 2705 0.06 37.46 12.0 4.95 1.31 79.1 20.9 

20 2846 0.05 37.45 26.3 6.95 0.53 93.0 7.0 

21 2924 0.05 37.43 27.8 4.74 0.04 99.1 0.9 

22 3047 0.02 37.42 11.2 11.49 0.87 92.9 7.1 

23 3119 -0.04 37.46 7.0 4.08 0.03 99.2 0.8 

24 3119 -0.04 37.46 14.2 6.64 0.02 99.7 0.3 

25 3119 -0.04 37.46 7.0 14.91 0.12 99.2 0.8 

26 3160 -0.01 37.42 8.9 2.60 0.54 82.7 17.3 

27 3268 -0.04 37.44 10.7 2.97 0.07 97.8 2.2 

 
2.3 Sample analysis 

 
GDGTs were analysed by high-performance liquid chromatography coupled to mass spectrometry 
(HPLC-MS) using an Agilent 1100 series HPLC instrument equipped with an automatic injector and 
coupled to a PE Sciex API 3000 mass spectrometer [20]. Separation was achieved with a Prevail 
Cyano column (2.1 mm x 150 mm, 3 µm; Alltech, Deerfield, IL, USA) at 30°C, using a mixture of A and 
B (A= hexane and B= isopropanol) at 0.2 ml/min. Elution began at 99% A/1% B for 5 min followed by 
a linear gradient to 98% A/2% B in 45 min. A second linear gradient led to a mixture of 90 % A/10 % 
B in 10 min, maintained for 10 min and returned to the initial conditions (99% A/1% B) in 14 min, 
then maintained for 10 min. The injection volume was 10 μl. Ionization was performed with an 
Atmospheric Pressure Chemical Ionization Source (APCI). Single ion monitoring (SIM) of the [M+H] + 
ions were used to detect the GDGTs [20]. Semi-quantification of the GDGTs was performed by 
comparing the integrated signal of the respective compound with the signal of a C46 synthesized 
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internal standard, as described by [31]. It should be noted that the brGDGT data of Mt. Kenya soils 
reported in this study were included in the regional East African calibration previously published by 
[25]. 
 

The MBT and CBT indices were calculated according to the equations developed by [17]: 

 

MBT= ([I+Ib+Ic])/([III+IIIb+IIIc]+[II+IIb+IIc]+[I+Ib+Ic])  [Eq. 1] 

 

CBT= -log([Ib+IIb])/([I+II])      [Eq. 2] 

 

Roman numbers refer to the GDGT structures described in Figure 1. 

 

The MBT’ was calculated as follows [1]: 

 

MBT'= ([I+Ib+Ic])/([III]+[II+IIb+IIc]+[I+Ib+Ic])   [Eq. 3] 

 

MAAT was estimated using the global soil calibration developed by [17]; Eq. 4 and the extended 

calibration introduced by [1]; Eq. 5 and the regional calibration by [25]; Eq. 6 respectively. 

 

MAAT= (MBT-0.122-0.187×CBT)/0.020    [Eq. 4] 

 

MAAT=0.81-5.67 × CBT+31.0 × MBT'    [Eq. 5] 

 

MAAT=-8.17 × CBT + 25.39 × MBT + 9.14    [Eq. 6] 

 

pH was calculated using soil calibrations developed by [17]]; Eq. 7 and [[1]]; Eq. 8: 

 

pH= (3.33-CBT)/0.38      [Eq. 7] 

 

pH=7.90-1.97 × CBT      [Eq. 8] 

 

The BIT index was calculated as follows ([15]; Eq. 9): 

 

BIT= (I+II+III)/(I+II+III+Crenachaeol)    [Eq. 9] 

 

TEX86 was calculated as follows ([12]; Eq. 10): 

 

TEX86=(GDGT 2+GDGT3+Crenachaeol) (GDGT1+GDGT2+GDGT3+Crenarchaeol')⁄  [Eq. 10] 

Crenarchaeol’ refers to the regio isomer of this compound. 
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3. Results and Interpretation 
 

3.1 GDGT distribution and concentrations 
 

BrGDGTs and iGDGTs were detected in all the soil samples collected along the transect (Error! 

Reference source not found.). Generally, the brGDGTs are more abundant than the iGDGTs 

comprising of 57.0 to 99.7% of the total GDGTs (i.e. brGDGTs + iGDGTs). The relative abundance of 

iGDGTs ranges from 0.3 to 43.0% with an average of 12.1% of the total GDGTs, consistent with the 

average relative abundances (10 %) reported by [13] for soils from all over the world. The total 

brGDGT concentrations in the soils range from 2.4 to 15.8 µg/g Corg (mean: 6.87 µg/g Corg) (Table 1). 

These values agree with the abundances of brGDGTs previously reported in soil samples from East 

Africa ranging from 1.1 to 8.3 µg/g Corg for Mt. Rungwe, Tanzania [20] and of 4.0 and 20 µg/g Corg for 

soils from Western Uganda [32]. The iGDGT concentration ranges from 0.002 to 0.352 µg/g Corg 

(mean: 0.088 µg/g Corg) of dry soil weight, consistent with the regional ranges previously reported 

as 0.05 and 1.5 µg/g Corg in Mt. Rungwe Tanzania [20]. 

 

Table 2: The relative abundance of branched and isoprenoid GDGTs in the soil samples 

No. 
  

Altitude 
(m asl) 
  

Relative Branched GDGTs (%) Relative Isoprenoid GDGTs (%) 

I Ib Ic II IIb IIc III IIIb IIIc 0 1 2 3 4 Cren Cren’ 

1 1800 74.4 1.7 n.d 23.5 0.5 n.d n.d n.d n.d 20.3 23.4 22.0 13.2 n.d 15.1 5.9 

2 1800 63.6 3.9 0.2 28.4 1.3 n.d 2.6 n.d n.d n.d n.d 20.0 12.2 19.5 39.3 9.0 

3 1823 54.5 14.1 6.3 16.7 5.6 0.3 2.5 n.d n.d 12.9 4.7 n.d n.d 16.9 57.5 8.0 

4 1847 39.6 14.0 4.0 30.2 6.3 1.1 4.8 n.d n.d 18.8 8.2 10.7 8.7 n.d 45.4 8.2 

5 1847 64.7 3.1 1.3 27.1 1.3 0.4 2.1 n.d n.d 21.2 5.3 14.4 6.7 n.d 45.7 6.7 

6 1847 35.4 13.9 3.7 33.9 8.0 1.2 3.9 n.d n.d n.d n.d 10.4 6.1 17.1 53.2 13.2 

7 1897 63.0 5.7 2.0 24.5 2.0 0.5 2.3 n.d n.d 23.8 8.6 10.7 7.4 n.d 42.6 7.0 

8 2027 40.9 6.8 1.1 39.9 4.1 0.8 6.3 n.d n.d 32.1 9.5 7.8 3.9 n.d 39.6 7.1 

9 2052 59.0 4.2 0.8 29.5 1.8 0.3 3.8 0.6 n.d 63.8 4.6 6.1 2.3 n.d 20.5 2.7 

10 2097 43.3 6.0 1.5 37.0 5.3 0.7 6.1 0.2 n.d 20.1 9.1 13.6 6.8 n.d 45.1 5.3 

11 2130 35.9 5.8 0.9 44.5 3.8 0.5 8.6 n.d n.d 29.4 8.3 11.0 4.6 n.d 43.6 3.0 

12 2189 46.2 10.6 6.1 27.0 5.0 1.3 3.4 0.4 n.d 25.2 20.5 20.2 10.6 n.d 19.6 3.8 

13 2258 48.9 8.3 3.8 29.9 4.7 0.7 3.4 0.2 n.d 13.3 9.2 13.6 8.1 n.d 51.4 4.5 

14 2318 60.7 5.2 1.7 26.5 2.6 n.d 3.3 n.d n.d 93.7 0.7 0.8 n.d n.d 4.0 0.7 

15 2323 27.6 17.9 4.9 32.1 8.8 0.8 7.8 n.d n.d 13.7 n.d 21.1 n.d n.d 55.6 9.6 

16 2350 71.6 8.5 4.1 10.3 0.9 1.6 2.9 n.d n.d 23.2 21.5 27.1 22.9 n.d 5.1 0.2 

17 2500 18.5 14.8 2.3 36.3 13.1 1.0 12.2 1.7 n.d 13.8 0.0 n.d n.d n.d 75.5 10.7 

18 2642 42.4 8.2 1.9 36.3 4.1 0.7 6.4 n.d n.d 47.5 7.7 9.6 4.3 n.d 28.6 2.3 

19 2705 20.2 10.4 1.1 37.1 13.5 0.8 14.9 1.8 0.2 34.9 8.4 9.9 5.7 n.d 38.8 2.3 

20 2846 26.9 8.1 1.3 41.8 8.8 0.9 11.4 0.6 n.d 71.3 6.5 5.8 2.4 n.d 13.2 1.0 

21 2924 27.6 10.4 1.7 40.1 8.6 0.9 9.7 0.9 0.1 74.0 3.0 3.0 2.2 n.d 16.5 1.3 

22 3047 20.8 6.9 1.5 44.4 10.0 0.9 14.3 1.0 0.1 50.1 24.4 n.d 2.7 n.d 22.1 0.6 

23 3119 24.3 8.4 3.0 39.8 10.6 1.1 11.7 1.0 0.1 28.6 8.4 12.0 7.4 n.d 41.5 2.2 

24 3119 42.9 1.7 0.3 45.1 1.0 0.3 8.8 n.d n.d 64.8 16.7 7.8 3.4 n.d 7.4 0.0 

25 3119 62.0 6.8 12.0 10.5 3.5 2.3 2.9 n.d n.d 39.2 28.3 21.7 8.3 n.d 2.4 0.0 

26 3160 43.0 2.5 0.8 43.3 1.4 0.7 8.4 n.d n.d 26.7 11.0 15.0 4.2 n.d 39.4 3.7 

27 3268 45.3 1.2 0.8 37.1 1.3 1.0 10.9 2.0 0.5 40.6 16.0 13.3 n.d n.d 27.7 2.4 
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Acyclic brGDGTs (I, II and III) are generally more abundant than those with cyclopentyl moieties 

(Table 2). BrGDGTs I and II are the most abundant homologues in all samples. Among the iGDGTs 

the crenarchaeol and GDGT – 0 are always the most abundant compounds (Table 2). iGDGTs 1 – 3 

are present in lower relative abundances. 

 

3.2 brGDGT-derived proxies 
 

MBT, MBT’ and CBT were calculated for all the soil samples from the altitudinal transect (Table 3). 

The CBT ranges from 0.38 to 1.58 (Table 3) and displays no relationship with altitude (R2=0.14, p = 

0.12). A cluster of high-altitude soils (>3000 m asl) with high CBT is present. With the exception of 

this cluster a poor CBT – altitude correlation is still observed (R2=0.23; not shown).  

 

Table 3: brGDGT and iGDGT-derived proxies as well as temperature and pH estimates derived from these 
proxies along Mt. Kenya transect. 

No 
Altitude 
(m asl) BIT MBT MBT' CBT 

pH 
[17] pH [1] 

MAAT 
[1] 

MAAT 
[17] 

MAAT 
[34] 

MAAT 
[25] TEX86 1302/1292 

1 1800 0.97 0.76 0.76 1.66 4.40 4.63 15.0 16.4 17.6 14.9 0.64 1.34 

2 1800 0.96 0.68 0.68 1.25 5.48 5.44 14.7 16.0 17.6 16.1 0.70 0.50 

3 1823 0.88 0.62 0.62 0.76 6.77 6.41 15.6 17.7 17.5 18.6 0.77 0.44 

4 1847 0.97 0.50 0.50 0.50 7.45 6.92 13.6 14.3 17.2 17.8 n.d 7.00 

5 1847 0.88 0.53 0.53 0.50 7.44 6.91 14.4 15.7 17.2 18.5 0.79 0.32 

6 1847 0.86 0.58 0.58 0.54 7.35 6.84 15.6 17.6 17.2 19.4 0.77 0.41 

7 1897 0.68 0.69 0.69 1.32 5.30 5.31 14.8 16.1 16.9 15.9 0.84 0.46 

8 2027 0.77 0.71 0.71 1.06 5.98 5.82 16.8 19.4 16.1 18.5 0.74 0.56 

9 2052 0.63 0.49 0.49 0.87 6.48 6.19 11.0 10.2 16.5 14.5 0.67 0.81 

10 2097 0.64 0.64 0.64 1.17 5.69 5.60 14.2 15.0 16.2 15.8 n.d 3.11 

11 2130 0.65 0.51 0.51 0.86 6.51 6.22 11.7 11.3 15.7 15.0 0.74 0.45 

12 2189 0.53 0.43 0.43 0.93 6.33 6.08 8.8 6.5 15.3 12.4 0.69 0.68 

13 2258 0.82 0.63 0.63 0.67 7.00 6.58 16.6 19.1 15.1 19.6 0.63 1.29 

14 2318 0.79 0.61 0.61 0.78 6.70 6.36 15.3 17.1 15.1 18.2 0.74 0.26 

15 2323 0.70 0.68 0.68 1.05 6.01 5.84 15.8 17.9 14.5 17.8 n.d 23.20 

16 2350 0.95 0.36 0.36 0.29 7.99 7.32 10.4 9.0 14.3 15.8 1.00 0.18 

17 2500 0.66 0.52 0.52 0.81 6.64 6.31 12.5 12.6 13.6 15.9 0.68 1.66 

18 2642 0.63 0.32 0.32 0.38 7.76 7.15 8.7 6.2 13.2 14.1 0.68 0.90 

19 2705 0.61 0.36 0.37 0.61 7.16 6.70 8.7 6.4 12.9 13.4 n.d 5.42 

20 2846 0.67 0.40 0.40 0.55 7.31 6.81 10.1 8.6 12.1 14.7 n.d 4.47 

21 2924 0.56 0.29 0.30 0.58 7.22 6.75 6.6 3.0 11.9 11.8 n.d 2.26 

22 3047 0.63 0.36 0.36 0.53 7.37 6.86 9.0 6.8 11.1 13.9 0.72 0.69 

23 3119 0.29 0.49 0.49 1.48 4.87 4.98 7.5 4.4 10.3 9.4 n.d 3.54 

24 3119 0.31 0.40 0.40 1.28 5.39 5.37 6.0 2.1 10.6 8.9 0.65 1.49 

25 3119 0.23 0.45 0.45 1.53 4.74 4.89 6.1 2.1 10.6 8.1 n.d 8.80 

26 3160 0.31 0.46 0.46 1.35 5.21 5.24 7.5 4.4 10.5 9.9 0.68 0.68 

27 3268 0.29 0.47 0.48 1.52 4.77 4.91 7.2 3.3 10.0 8.7 0.50 1.46 

*MAAT and pH [17]; corresponds to global temperature and pH calibration [Eqn. 4 and 7, respectively] 
*MAAT and pH [1]; corresponds to global temperature and pH calibration [Eqn. 5 and 8, respectively] 
*MAAT [34]; corresponds to gridded WorldClim global temperature climate dataset; 
https://worldclim.org/version2 
*MAAT [25]– corresponds to regional temperature calibration [Eqn. 6] 

https://worldclim.org/version2
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The reconstructed pH values in acidic to neutral soils display no relation to the elevation. This 

relationship is similar to those of in situ pH measurements from Mt. Kenya [33] and field 

observations. The soils from the lower elevations (1600 – 2000 m asl) that cover the younger volcanic 

rocks are mildly acidic to neutral andosol, while the mid altitudes (2000 – 3000 m asl) soils are well 

drained, moderately deep nitisols (acidic) and those in the high altitudes (>3000 m) are poorly 

developed, humic nitisols (acidic). The MBT and MBT’ values are identical in most cases with the 

exception of three samples (Table 3). The MBT weakly correlates with altitude (R2 = 0.37, p > 0.001; 

Figure 3). This is due to the influence of other parameters, especially pH, on this index along Mt. 

Kenya (R2 = 0.09, p = 0.14,not shown). 

 
 

 
Figure 3: Relationship between brGDGT-derived indices (MBT/CBT) and altitude. 

 
MBT/CBT-derived MAAT ranges (Figure 4) from 2.1 °C to 19.4°C, 6.0 °C to 19.4 °C and 8.1 to 19.6 °C 

using the global soil calibrations by [17] and [1] and the regional calibration by [25], respectively. 

The MAAT displays a strong linear relationship with altitude (Figure 4). Generally, the MAAT shows 

a decrease with altitude consistent with previous observations [13], [18], [19] and confirms the fact 

that brGDGTs can be used as indirect indicators of changes in temperature with altitude. The lapse 

rate of the reconstructed MAAT are 0.53°C/100 m, 0.90 °C /100 m and 0.42°C /100 based on the [1] 

[17]  [25] calibrations respectively. The comparison of these reconstructed values against the 

measured temperatures (range10.0 to 17.6 °C; lapse rate of 0.52 °C /100 m) from [34] shows that 

the estimates from [1] and [25] are closer to the real values than the estimates based on the [17] 

calibrations (Figure 4).  

 

Although the MBT/CBT correlates with air temperature in East Africa [25], some scatter remains in 

the relationship, as other environmental parameters, such as soil moisture [35], soil type [36], 

vegetation [37] or seasonality [31] may also influence the GDGT distribution in soils. As suggested 

by [25], the application of the brGDGT-derived proxies is site dependent and care has to be taken 

when applying such proxies to reconstruct past elevation changes.  
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Figure 4: The reconstructed MAAT from [1], [17] and [25]calibrations. The measured MAAT from 
Worldclim data [34] is plotted for comparisons along the soil transect. 
 

3.3 iGDGT-derived proxies  
 
The TEX86 was calculated for Mt. Kenya soil samples. A proper application of TEX86 requires that the 
iGDGTs present in the samples are mainly derived from Thaumarchaeota [10]. A value of 
caldarchaeol (GDGT-I) vs. crenarchaeol ratio higher than 2 is considered as an indication of the 
predominance of methanogenic Archaea [16]. Reliable TEX86 values can only be obtained when 
Thaumarchaeota are the most abundant (i.e. the GDGT-I vs. GDGT-VI ratio is lower than 2). In our 
soil samples the GDGT – 0/ Crenarchaeol ratio is much lower than 2 (0.4 to 1.6) in 23 out of 31 
samples (Table 3). The calculation of the TEX86 was achieved only for the samples presenting a GDGT-
0/crenarchaeol ratio lower than 2 (Table 3). This index displayed a weak relationship with altitude 
(R2 = 0.28, p = 0.03), questioning, its applicability as a palaeoelevation proxy along Mt. Kenya (Figure 
5). In contrast, a stronger correlation was obtained from a shorter transect (500-2500 m) along Mt. 
Rungwe (R2 0.50; [20]) and from a higher altitude transect (3250-4000 m) along Mt. Xiangpi (R2 0.68; 
[3]). 
 

 
Figure 5: The TEX86 reconstruction along the transect. 

 

In addition to temperature, unique environmental parameters, such as vegetation cover, 

precipitation and soil humidity could also have an effect on the distribution of the iGDGTs and by 

extension affect the TEX86 values obtained. Soil humidity was notably suggested to have an influence 

on brGDGT [1], [38] and iGDGT [39] distributions in soils. Along Mt. Kenya, the topography enhances 



OMUOMBO et al.                        |GEOLOGY 

136 
 

the effects of the precipitation received during the rainy season [29]. The amount of precipitation 

gradually increases with altitude until about 2000 – 2500 m asl after which a decline in rainfall similar 

to other East African mountains is observed [26], [28]. Precipitation will have an impact on the soil 

moisture content as can be seen in the well-developed well drained soils between 2000 – 2500 m 

and the poorly developed soils above this altitude. This is in contrast to Mt. Rungwe where the 

precipitation amount does not change significantly with altitude [20], which could explain the 

stronger relationship between TEX86 and temperature along this mountain. Similarly, the larger 

scatter observed by [25] in the relationship between δ²Hwax and altitude along Mt. Kenya than 

along Mt. Rungwe could also be explained by precipitation changes observed in the ecological zones 

that correspond to specific altitude. In our study, the from 1800 – 2500m asl are a mix of C3/C4 

vegetation type while those >2500m asl are C3 - type [39]. Thus, despite the varied species along the 

transect, it is possible to assume that precipitation plays a key role in the changes observed in the 

δ²Hwax. Additional regional studies on the applicability of TEX86 as a temperature proxy are needed 

along other altitudinal transects. 

 

In contrast with the MBT/CBT, the applicability of TEX86 as a temperature proxy in soils has been 

much less investigated. Studies along altitudinal transects in China [3] and Tanzania [20] reported a 

linear relationship between TEX86 and altitude, implying that air temperature could have an effect 

on the distribution of iGDGTs in soils. Nevertheless, a large degree of scatter between these two 

independent altitudinal gradients was observed, implying that additional studies are needed to fully 

understand the factors impacting on the potential application of TEX86 as a paleoelevation proxy. 

 

4. Conclusions 

 

The brGDGT distribution was shown to vary with elevation in soils from Mt. Kenya, as reflected in 

the decrease in MBT/CBT-derived MAAT with altitude. The MBT/CBT-derived temperature lapse 

rate as well as absolute temperature range calculated using the global soil calibration by [1] was 

similar to values derived from in situ measurements by [34]. This confirms the robustness of the 

MBT/CBT proxy in East Africa. The TEX86 displayed a weak correlation with altitude and a large 

degree of scatter in contrast with some previous studies along Tanzanian or Chinese mountains. This 

could be explained by the fact that other parameters than temperature, such as precipitation/soil 

humidity locally influence the distribution of iGDGTs and thus TEX86 values. A better understanding 

of environmental parameters affecting iGDGT distribution regionally is required before a potential 

application of the TEX86 as a paleoelevation proxy along individual mountains. 
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controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta, 71 (3): 
703-713. DOI:10.1016/j.gca.2006.10.003. 

[18] Sinninghe Damsté, J.S., Ossebaar, J., Schouten, S. and Verschuren, D. (2008) Altitudinal shifts in the branched 
tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental 
palaeothermometer. Organic Geochemistry, 39: 1072-1076. 

[19] Peterse, F., Kim, J-H., Schouten, S., Kristensen, D. K., Koç, N. and Sinninghe Damsté, J. S. (2009) Constraints on the 
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