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 It is estimated that malaria affects over 200 million people every year, and 
accounts for about 750,000 deaths during the same period. The disease 
control measures often include interventions aimed at reducing the survival 
of the adult female Anopheles mosquitoes. Whereas research effort has been 
paid to evaluate the effects on the vector survival, little research has been 
done on how temperature and time affect the vector adult life-history 
parameters. This paper sought to compare the performance of four 
parametric models, namely; Gompertz, gamma, Weibull, and exponential 
models to determine the best model for analyzing the survival of the female 
Anopheles mosquito. Using data from a mosquito survival experiment, the 
paper compared the performance of the models in fitting mosquito 
mortality. The results showed that temperature and age are significant 
predictors of vector mortality. In addition, the Gompertz model fitted the 
data on the adult A. gambiae and A. stephensi better than the Weibull, 
Gamma, and the Exponential models. The findings of the current paper are 
useful in parameterizing reliable mathematical models that examine the 
potential impact of temperature as well as global warming on the 
transmission of malaria.   
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1. Introduction 

 
The adult female adult female Anopheles mosquito, Anopheles gambiae sensu stricto, plays a 
significant role in the transmission of vector diseases in Africa [1]. They are the sole vectors for 
the transmission of the human malaria pathogen, Plasmodium. Malaria is among the most 
significant infectious diseases globally, which is estimated to affect over 200 million people 
annually, and causes about 750,000 deaths over the same period [2]. The World Health 
Organization’s 2017 Malaria report [2] shows that in 2016, malaria cases increased to 216 million, 
while deaths reduced to 445,000. Significant research attention in this area has been focused on 
how malaria can be reduced or eliminated. In this regard, the research focus has been on the 
interventions of the Plasmodium parasite in humans, as well as those designed to interrupt the 
transmission of the parasite by mosquitoes. The vector control measures have included 
interventions aimed at reducing the survival of the adult female Anopheles mosquitoes. While 
these factors are important, the survival of the adult female Anopheles mosquitoes, which is one 
of the most significant components of their ability to transmit vector-borne pathogens such as 
plasmodium virus, has attracted little attention [3]. A high survival rate of the arthropod vectors 
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allows the vectors to produce more offspring, which in turn increase their chances of becoming 
infected, spread over greater distances; survive for longer as well as improving their chances of 
delivering effective bites throughout their lifetime. According to Brady et (2013) [4], small changes 
in the survival rates of the vectors often results in large pathogen transmission changes. In 
addition, the survival rate differences often influence the vector’s geographical distribution as 
well as their seasonality.  

 
Research interests in quantifying factors affecting the vector’s survival rates and how the vector 
affects disease transmission have been considerable [5,6]. With the emergence of climate change 
and global warming as significant human health threats, particularly by increasing vector-borne 
diseases and water-borne diseases, it is logical that we observe temperature consistently as a key 
factor influencing the vector survival [7]. The few studies existing on the survival of the vector 
indicate that mosquito survival depends on temperature, rainfall, and humidity, and other factors 
such as mosquito density, genetic diversity, as well as its ability to find blood [1,7,8]. It was also 
noted [4] that other factors such as photoperiod as well as humidity are important, but the effect 
of temperature is the most rigorously quantified limiting factor for vector survival.  
 

Prior research on the interventions and control of malaria has often focused on interrupting the 
transmission of the parasite by mosquitoes. Scientists have sought to disrupt the survival of 
mosquitoes using such factors as temperature, and age. To better understand the impacts of the 
individual factors on the survival of the vectors, many parametric models have been built for 
measuring their effect. These include the exponential, gamma, Weibull, Gomperts models among 
others. However, significant variations are usually observed across vector populations by applying a 
specific model. As such, models have been cross-validated with different cohorts. Therefore, the aim 
of this paper was to compare, using temperature and age-dependent data, the performance of four 
parametric models, namely, Gompertz, gamma, Weibull, and exponential models to determine the 
best model for analyzing the survival of the female Anopheles mosquito. The current investigation 
attempts to validate a predictive model based on mosquito mortality data by survival analysis. 
 
2. Materials and methods 
 

This section focuses on the description of data, the parametric methods for regression model used 
to analyse the data, and the criterion used to select the best-fit model for the vector survivorship. 
 

2.1 Data sources 
 
Data from the Malaria transmission experiment, which was collected from the Dryad Digital 
Repository, was considered. The data consists of 2279 mosquitoes with 8 variables [10]. The data 
was collected from a lab experiment where Anopheles gambiae and Anopheles stephensi were 
reared under standard insectary conditions at 27 ± 0.5°C, 80 percent humidity, 12 hours light:12 
hours dark photoperiod, and on a 10 percent glucose diet. After emerging, three-day-old female 
adult mosquitoes were randomly distributed into the 18 x 18 x 18 cm cages. There were a total of 
150 cages representing one of the 18 treatment groups consisting of three mean temperatures 
(27°C, 30°C, and 33°C), two infection treatments (P. falciparum-infected, and blood-fed controls), 
and three Diurnal Temperature Ranges (DTR 0°C ± 0°C; DTR 6°C ± 3°C, and DTR 9°C ± 4.5°C [10].  

 
There were two replicates of Anopheles gambiae, and 3 replicates of Anopheles stephensi 
experiments and the mosquitoes in each experiment were deprived of sugar solution for 12 hours 
prior to being introduced to either the uninfected blood meal or Plasmodium falciparum culture to 
minimize inter-culture variations and ensure similar dosages [10]. Directly after the blood feeds, the 
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mosquitoes were introduced into the appropriate temperature treatments and maintained on a 10 
percent sugar solution daily. The average temperatures and the diurnal temperature ranges were 
selected based on the microclimate data collected from the various housing types throughout the 
transmission season in Tanzania, India, and Chennai [10].  
 
The midguts and salivary glands were dissected on the 7th day, and the 15th day post-infection for 
each P. falciparum exposed to the treatment group to quantify the effects of variation in mean 
temperature, diurnal temperature ranges, and treatment measures of the vector competence. The 
number of dead mosquitoes was counted in each cage throughout the experiment to quantify the 
effects of temperature fluctuation on the daily mortality [10].  
 

2.2 Parametric Methods of Regression 
 
The parametric methods for regression modeling considered in this paper are the exponential, 
Weibull, gamma, and the Gompertz models. 

 
2.2.1  Exponential Distribution 

 
The exponential distribution is an important distribution in survival studies, which researchers often 
choose to describe life patterns. It is often referred to as a purely random failure pattern, and famous 
for its lack of memory, which requires that the age of a person, animal, or organism does not affect 
failure survival [11]. Whereas the distribution does not adequately describe many survival data, its 
understanding facilitates the treatment of more general situations. The distribution is characterized 
by a constant hazard rate, whereby a high hazard rate value is an indication of high risk and short 
survival, and a low hazard rate value is an indication of low risk and long survival.  
 
The exponential distribution can be parameterized by its mean a with the probability density 
function 

 

𝑓(𝑡) =
1

𝛼
𝑒−𝑡/𝛼𝑓𝑜𝑟𝑡 > 0 ; 𝛼 > 0             (1) 

 
The variable T can also be parameterized using its rate λ with the following probability density 
function 

 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡𝑓𝑜𝑟𝑡 > 0; 𝜆 > 0          (2) 
 

Using the mean parameterization, the cumulative distribution function of the variable T would be 
given as follows: 

 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑒−𝑡/𝛼𝑓𝑜𝑟𝑡 > 0          (3) 
 

The survivor function of T would be given by: 

 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 𝑒−𝑡/𝛼 𝑓𝑜𝑟 𝑡 > 0          (4) 
 

The hazard function of T would be given by: 
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ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

1

𝛼
𝑓𝑜𝑟𝑡 > 0           (5) 

 

 

 
The cumulative hazard function of T would be given by: 

 

𝐻(𝑡) = −𝑙𝑛𝑆(𝑡) =
𝑡

∝
𝑓𝑜𝑟𝑡 > 0            (6) 

 
The exponential distribution has been successfully used by researchers to model the mosquito 
vector mortality rates accounting for the effects of seasonal variations in the vector recruitment 
[12]. A recent study by Brand, Rock, and Keeling [13] successfully used the model for the survival in 
vector-borne disease transmission and control. 
 

2.2.2 Weibull Distribution 

 
The Weibull distribution, which was developed by Weibull in 1951, is a generalized exponential 
distribution with a shape distribution equal to one. It has found wide application in studies 
examining the reliability as well as the human disease mortality since it allows the survival 
distribution for populations whose risk is either decreasing, increasing, or constant [14]. The main 
contrast between the Weibull and the Exponential distribution is that the Weibull distribution is not 
based on the assumption of a constant hazard rate, hence has a wider application as compared to 
the exponential distribution. 
 
The shorthand T ~ Weibull(α, β) indicates that the random variable T is Weibull with scale parameter 
α > 0 and shape parameter β > 0. The variable T has probability density function: 

 

𝑓(𝑡) =
𝛽

𝛼
𝑡𝛽−1𝑒−(

1

𝛼
)𝑡𝛽

𝑓𝑜𝑟𝑡 > 0          (7) 

 
The cumulative distribution function of T is given by: 

 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑒−(
1

𝛼
)𝑡𝛽

𝑓𝑜𝑟𝑡 > 0      (8) 
 

The survivor function of T is given by: 

 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 𝑒−(
1

𝛼
)𝑡𝛽

𝑓𝑜𝑟𝑡 > 0      (9) 
 

The hazard function of T is given by: 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝛽

𝛼
𝑡𝛽−1𝑓𝑜𝑟𝑡 > 0      (10) 

 
The cumulative hazard function of T is given by: 

 

𝐻(𝑡) = −𝑙𝑛𝑆(𝑡) =
1

𝛼
𝑡𝛽𝑓𝑜𝑟𝑡 > 0       (11) 
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The Weibull distribution has been successfully used to model for survival time in various vector 
development and survival studies. For instance, Degallier et al. [15] successfully applied the model 
in examining how the local environment affected the aging and mortality of mosquitoes in Fortaleza, 
Brazil [15]. In comparison with other parametric models, the Weibull model provided a better fit for 
mosquito survival data as compared to other models. Stone et al. [16] also applied the Weibull 
model to assess how plant community composition influenced the vectorial capacity and fitness of 
the Anopheles gambiae mosquito. 

 
2.2.3 Gamma Distribution 

 
The gamma distribution encompasses two distributions: the exponential distribution and the chi-
square distribution. The distribution was used by Phelan and Roitberg [17] to assess how food, 
temperature, and water depth influenced the diving activity of mosquitoes. The shorthand T ~ 
gamma (α β) indicates that the random variable T has a gamma distribution. A gamma random 
variable T with positive scale parameter α and a positive shape parameter β has probability density 
function: 

 

𝑓(𝑡) =
𝑡𝛽−1𝑒−𝑡/∝

∝𝛽 𝛤(𝛽)
𝑓𝑜𝑟𝑡 > 0  (12) 

 
The cumulative distribution function of T is given by: 

 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) =
𝛤(𝛽, 𝑡/𝛼)

𝛤(𝛽)
𝑓𝑜𝑟𝑡 < 0      (13) 

 

Where 𝛤(𝑠, 𝑡) = ∫ 𝑡𝑠−1∞

0
𝑒−𝑡𝑑𝑡 is an incomplete gamma function, and 𝛤(𝑠) =

∫ 𝑡𝑠−1∞

0
𝑒−𝑡𝑑𝑡 is the gamma function.  

 

The survivor function of T is given by: 

 

𝑆(𝑡) = 1 −
𝛤(𝛽, 𝑡/𝛼)

𝛤(𝛽)
𝑓𝑜𝑟𝑡 > 0        (14) 

 
The hazard function of T is given by: 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝑡𝛽−1𝑒−𝑡/∝

(𝛤(𝛽) − 𝛤 (𝛽,
𝑡

∝
)) ∝𝛽 𝛤(𝛽)

     (15) 

 
The cumulative hazard function is given by: 

 

𝐻(𝑡) = −𝑙𝑛𝑆(𝑡) = − ln (1 −
𝛤 (𝛽,

𝑡

𝛼
)

𝛤(𝛽)
) 𝑓𝑜𝑟𝑡 > 0  (16) 

 
The hazard function of the distribution gives rise to a variety of forms depending on the value of the 
gamma parameter. 
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2.2.4 Gompertz Distribution 

 
The Gompertz distribution is derived from the Gompertz-Makeham family of distributions. The 
model is very closely related to the Weibull distribution in the sense that it represents the log of a 
Weibull distribution. The model provides a very close fit to adult mortality in contemporary 
developed nations [18]. The Gompertz distribution is based on the assumption that there is a law of 
mortality that explains the existence of common age patterns of death [19]. The shorthand T ~ 
Gompertz (δ, κ) indicates that the random variable T has the Gompertz distribution with parameters 
δ and κ. A Gompertz random variable T with shape parameters δ and κ has probability density 
function 

 

𝑓(𝑡) = δκte−δ(κt−1)/ ln(κ) for t > 0; κ > 0;  δ > 0  (17) 
 

The cumulative distribution function of T is given by: 

 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − e
−

δ(κt−1)

ln(κ)  for t > 0    (18) 
 

The survivor function of T is given by: 

 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = e
−

δ(κt−1)

ln(κ)    for t > 0      (19) 
 

The hazard function of t is given by: 

 

ℎ(𝑡) = δκt         for t > 0     (20) 
 

The cumulative hazard function of T is given by: 

 

𝐻(𝑡) =
δ(κt − 1)

ln(κ)
𝑓𝑜𝑟𝑡 > 0             (21) 

 
The model has been widely used in actuarial and biological applications as well as in demography. 
Clements and Peterson [20] used the model to analyze the mortality and survival rates in wild 
mosquito populations. The model has also been applied in the analysis of the effects of larval food 
quantities on the capacity of adult mosquitoes to transmit human malaria. Therefore, it would be 
interesting to see how the model performs in analyzing the effect of temperature and age-
dependent survival in mosquitoes. 
 

2.3 Model Selection Criteria 
 
The objective of the current paper was to compare the efficacy of the exponential model, the gamma 
model, the Weibull model, and the Gompertz model in fitting the temperature and age-dependent 
mosquito survival data. It involves comparing the goodness of fit of the four parametric models in 
regard to fitting of the observed data. In the context of model selection, the assumptions are that 
the statistical inference is model-based and that there is only one correct model or best fit model 
that suffices as the best model for making inferences [21]. The objective of model selection can be 
achieved by use of Akaike’s Information Criterion (AIC), Log-likelihood (-2LL) or the Bayesian 
Information Criterion (BIC) [21]. 
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2.3.1 Akaike’s Information Criterion (AIC) 

 
The AIC is a powerful, multimodal inference that can be used to determine the model that the model 
that best describes the factors that influence the variable of interest [22]. The method was first 
described by Akaike (1973) as a strategy for comparing various models on a given outcome. For 
instance, the researcher in the present paper is interested in what variables influence the survival 
of mosquitoes, and how the variables may influence the survival of mosquitoes. Akaike (1973) 
demonstrated that the best model is determined by calculating an AIC score as follows: 

 

𝐴𝐼𝐶 =  2𝐾 − 2 𝑙𝑛(𝐿)         (22) 
 

Where k represents the number of parameters and L represents the likelihood function's maximized 
value. The constant 2 is used for historical reasons [22]. The AIC value is interpreted such that the 
lower value of AIC indicates a better model. 
 

2.3.2 Bayesian Information Criterion (BIC) 

 
The BIC is a popular tool used by researchers for the selection of statistical models. It is preferred by 
many researchers due to its computational simplicity as well as its good performance in various 
modelling frameworks where other distributions have proved to be elusive [23]. Under the 
assumption that the model errors are independently and identically distributed in accordance to a 
normal distribution, and that the boundary condition that the derivative of the log likelihood with 
respect to the true variance is zero, the formula for BIC is given as follows: 

 

𝐵𝐼𝐶 = −𝑛𝑙𝑛(𝜎𝑒
2) + 𝑘𝑙𝑛(𝑛)           (23) 

 

Where 𝜎𝑒
2 is the error variance given by: 

 

𝜎𝑒
2 =

1

𝑛
∑ (𝑥𝑖 − 𝑥)2

𝑛

𝑖=0
 

 

Under the assumption of normality, a more tractable version is given by: 

 

𝐵𝐼𝐶 = 𝑋2 + 𝑘. 𝑙𝑛(𝑛)      (24) 
 

Just like the AIC, the BIC value is interpreted such that the lower value of BIC indicates a better 
model.  
 
The statistical analyses were conducted using the R software. The AIC and BIC values for each model 
were conducted, and the model with the smallest AIC and BIC selected as the best fit model. 
 
3 Results 

 
3.1 Data Exploration 

 
The dataset under consideration consists of 2279 observations. The variable of age is considered in 
terms of days post-infection, and is measured on an interval scale while the temperature is 
considered in as the average temperature and diurnal temperature range. There are no cases of 
missing values in the present dataset. Figure 1 below illustrates a Kaplan Meier plot of the data. Out 
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of the 2279 mosquitoes considered, 931 mortalities were recorded in a period of 15 days. 

 

 
 

 
 
Figure 1. The Kaplan Meier Curve showing survival probability on the Y-axis and time (hours) on the X-
axis. 

 
3.2 Model Selection 

 
Since the goal of the paper is to determine whether age and temperature are significant factors 
affecting the survival of mosquitoes and determine the model that best fits mosquito survival data, 
model selection forms the center of focus of this data analysis. Using the flexsurfreg() function in R, 
the mosquito survival data was fitted using four different models: the exponential, gamma, Weibull, 
and Gompertz model. In the next section, a comparison of the covariates is offered. 
 

3.2.1 Comparison of Covariates 

 
Table 1 below shows that the variables of age and average temperature are significantly associated 
with the survival time for all the four parametric models considered. Under the exponential model, 
the coefficients of age and temperature were found to be statistically significant predictors of 
mosquito survival (p<0.05) at 0.05 level of significance. Similarly, the variables were found to be 
statistically significant under the Weibull (Temperature: p=0.013, Age: p=0.0004), gamma 
(Temperature: p<0.05, Age: p=0.05), and Gompertz (Temperature: p<0.05, Age: p=0.05). 
 
Table 1: Comparison of Covariates 

Parameters Exponential  Weibull Gamma Gompertz 

  Sig.  Sig.  Sig.  Sig. 
Age  0.1701* <0.005 0.0775* <0.005 0.0960* <0.005 0.0046* <0.005 

Temperature 0.0650* <0.005 -0.2805* <0.005 0.3004* <0.005 0.0567* <0.005 

The values are expressed as a maximum likelihood estimate (Standard error), *-significant coefficients   

 
 

3.2.2 Model Selection 

 
Table 2 below shows the values of the log-likelihood (-2LL), Akaike’s Information Criterion (AIC) and 
the Bayesian Information Criterion (BIC) criteria for the fitted models. The log-likelihood results 
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provide strong evidence that the Gompertz model (-2LL=-4138.59) is the best fit model for the 
mosquito survival data, followed by the Weibull (-2LL=-4764.97), gamma model (-2LL=-4822.81), 
and the exponential model (-2LL=-5707.03) in that order. The -2LL results were confirmed by the AIC 
and BIC criteria, which showed the lowest values for the Gompertz model (AIC= 8285.18, BIC= 
8308.11), followed by the Weibull (AIC= 9537.95, BIC= 9560.87), Gamma (AIC= 9653.62, BIC= 
9676.55), and the Exponential model emerged as the worst model of the four (AIC= 11420.06, BIC= 
11437.25). 
 
Table 2: Model Selection Criteria 

Parametric  
distributions 

Model selection criteria 

-2LL (Log-Likelihood) AIC BIC 

Exponential  -5707.03 11420.06 11437.25 
Weibull  -4764.97 9537.95 9560.87 
Gamma  -4822.81 9653.62 9676.55 
Gompertz -4138.59 8285.18 8308.11 

 
 

3.2.3 Graphical Goodness of fit test 

 
The goodness-of-fit of a model describes how well a model fits a set of observations. Whereas 
measures of goodness-of-fit above gives a summary of the discrepancy between the observed values 
and the expected values of the dataset under the four models, fitted line plots of the models given 
in figures 2, 3, 4, and 5 display the relationship between the variables of age and temperature and 
the survival of the mosquitoes. In addition, the models display the efficacy of each model in fitting 
the survival data. 

 

 
Figure 1. Exponential Model data plot showing survival probability on the Y-axis and time (hours) on the 
X-axis. 

 
The data plot under the exponential model shows that the model is a poor fit. The black curve 
represents the survival curve as estimated by the Kaplan-Meier process, and the black dotted lines 
represent the 95% confidence interval. On the other hand, the red line and the red dotted lines 
represent the abstract function fitted by the exponential model and the confidence interval 
respectively. The objective of the model selection process is to achieve a model where the red and 
black curves to get close to each other. In the exponential model, the red and black curves are far 
from each other, indicating a poor fit.  
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Figure 2. Gamma model data plot showing survival probability on the Y-axis and time (hours) on the X-
axis. 

 
Figure 3 displays how the gamma model fits the mosquito survival data. As compared to the 
exponential model, the gamma model curve is closer to the Kaplan Meier curve, but not as close as 
the Weibull and the Gompertz model curves.  
 

 
Figure 3. Weibull model data plot showing survival probability on the Y-axis and time (hours) on the X-
axis. 

 
Figure 4 is a Weibull model curve of the data compared to the Kaplan Meier curve. Evidently, the 
Weibull curve is closer to the Gamma model curve, but does not provide the best fit for the data.  

 

 
Figure 4. Gompertz model data plot showing survival probability on the Y-axis and time (hours) on the X-
axis. 
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The Gompertz model data plot shown in figure 5 above shows a perfect fit of the observed values 
and the expected values. The Gompertz model curve lies very close to the Kaplan Meier Curve. Based 
on the visual assessment of the four curves, the Gompertz model provides the perfect fit for the 
mosquito survival data. 
 
4 Discussion  
 
The paper used experimental data considering 2279 Anopheles gambiae and Anopheles stephensi 
adult female mosquitoes to construct a temperature and age-dependent survival. It reaffirms that 
environmental temperature affects the survival of Anopheles gambiae and Anopheles stephensi 
during their lifetime as adults. The results from the study indicate that changes in the adult 
temperatures may have a significant impact on the survival of the mosquitoes. There was a 
statistically significant increase in environmental temperature with every 3°C increase in 
temperature. These results were consistent with results reported by [7] who used the temperature 
intervals of 4°C.  
 
In general, the Gompertz survivorship function fitted the mosquito survival data reasonably well, 
confirming the results by [7], and confirming the age-dependent mortality in adult female A. 
gambiae and A. stephensi species of mosquitoes. Early studies [7,24] had reported age-dependent 
mortality in the laboratory adult A. stephensi mosquito populations. Some authors have pointed out 
that vector-borne disease models tend to dismiss evidence supporting the age-dependent mortality 
for the sake of tractability, and because of the contradictory evidence between the laboratory and 
field studies [7], but the findings of this paper further solidify the evidence on the age-dependent 
vector mortality. This is because the age-independent exponential model is a poor fit.  

 
The findings herein indicate that environmental temperature to which A. gambiae and A. stephensi 
are exposed to during their adult stages significantly affect their survival. This has important 
implications for the A. gambiae and A. stephensi population dynamics, ecology as well as the 
transmission of the Plasmodium pathogen. The Gompertz model emerges as the best-fit model for 
fitting data on adult A. gambiae and A. stephensi survival in the laboratory as compared to the other 
parametric models such as the exponential, gamma and the Weibull models. The results will help in 
parameterising reliable mathematical models that examine the potential impact of temperature as 
well as global warming on the transmission of malaria. 
 
5 Conclusion 
 
This paper offers a comparison of the performance of four parametric models to determine the best 
model for analyzing the survival of the female Anopheles mosquito. The Gompertz, gamma, Weibull, 
and exponential models were utilized to model the survival of A. gambiae and A. stephensi species 
of mosquitoes. The four models differed significantly. The exponential model provided a poor fit of 
the vector survival data, while the Gompertz model provided a better fit compared to the Weibull, 
Gamma and the Exponential models. On the other hand, temperature and age were reaffirmed as 
important predictors of mosquito survival. Overall, the Gompertz model provides powerful 
statistical tool for the survival analysis of mosquito vector mortality data.  
 
The present study is based on laboratory experiment. Other researchers exploring the problem have 
suggested a potential contradiction between laboratory data and field studies data [7].  In addition, 
the experimental design conducted in the present study did not consider differences in humidity, 
which would affect mosquito development as well as survival. Therefore, the model needs further 
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confirmation from vector mortality data from the field given its importance in modeling vector 
population dynamics as well as malaria transmission. 
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