In vitro anthelmintic activity of Albizia gummifera, Crotalaria axillaris, Manilkara discolor, Teclea trichocarpa and Zanthoxylum usambarense using sheep nematodes

Boniface M Thuo, Grace N Thoithi, Ndichu Maingi, Stanley N Ndwigah, Rose N Gitari, Rebecca W Githinji, Richard O Otieno


Background: Albizia gummifera, Crotalaria axillaris, Manilkara discolor, Teclea trichocarpa and Zanthoxylum usambarense are used to treat different ailments in many parts of the world. For instance, A. gummifera is used to treat stomach pains, malaria, diarrhoea and sleeping sickness while C. axillaris treats ophthalmic disorders and kidney problems. Manilkara discolor stem bark infusion is used to treat stomach disorders and as an astringent while T. trichocarpa has been used to treat malaria, helminth infections and fever. Zanthoxylum usambarense is used to treat rheumatism, backache, painful joints, fever, sore throat, tonsillitis, chest pains, malaria, abscesses and wounds.

Objective: The aim was to determine whether the crude plant extracts have in vitro anthelmintic activity.

Materials and methods: Different parts of the plants were acquired from Ngong Hills forest, Kajiado County, Kenya in May 2012, dried and macerated to exhaustion with dichloromethane: methanol (1:1, v/v) solution. Nematode eggs (Haemonchus Spp, Trichostrongylus Spp and Oesophagostomum Spp) were obtained from infected sheep rectums at Department of Vet Farm, University of Nairobi based at Kabete. Varying concentrations of water solutions of the dry crude extracts were prepared. Egg hatch (EHA) and larvae development assays (LDA) were used to test the extracts’ effects on nematode egg hatching and larvae development, respectively

Results: Albizia gummifera (root bark) and Zanthoxylum usambarense (stem bark) showed high activity (IC50 below 300 μg / mL) in both tests.  Albizia gummifera (root, stem bark and pods), Zanthoxylum usambarense root bark, Crotalaria axillaris twigs and Teclea trichocarpa root and stem bark showed high activity in LDAbut moderate activity (300 μg / mL < IC50 < 500 μg / mL)  in EHA. Teclea trichocarpa twigs showed moderate activity in LDA but low (IC50 > 500 μg / mL) activity in EHA. Manilkara discolor extracts showed low activity in both tests.

Conclusion: Different extracts of the plants tested may inhibit nematode growth and development and hence warrant in vivo tests would support their ethnomedicinal application.

Key words: Anthelmintic activity, egg hatch, larval development, Haemonchus, Trichostrongylus, Oesophagostomum


Ayoo, J A. (2001). Thesis: Phytochemical investigation of Zanthoxylum usambarense. Available at: Accessed 20/2/2017.

Asres K, Sporer F, Wink M. (2004). Patterns of pyrrolizidine alkaloids in 12 Ethiopian Crotalaria species. Biochem. Syst. Ecol. 32: 915–930.

Barbalho SM, Bueno PC, Delazari DS, Guiguer EL, Coqueiro DP, Araújo AC, de Souza Mda S, Farinazzi-Machado FM, Mendes CG, Groppo M. (2015). Antidiabetic and antilipidemic effects of Manilkara zapota. J Med Food. 18:385-91.

Bekele M, Gessese T, Kechero Y, Abera M. (2011). In-vitro Anthelmintic activity of condensed tannins from Rhus glutinosa, Sysigium guineensa and Albizia gummifera against sheep Hemonchus Contortus. Global Veterinaria 6:476-484.

Bussmann RW, Gilbreath GG, Mathenge SG (2006). Plant use of the Maasai of Sekenenai Valley, Maasai Mara, Kenya. J Ethnobiol Ethnomed. 2: 22.

Crout DHG (1969). Structures of axillarine and axillaridine, novel pyrrolizidine alkaloids from Crotalaria axillaris Ait . J. Chem. Soc. C. pp: 1379-1385.

Easwaran C, Harikrishnan TJ, and Raman M (2009). Multiple anthelmintic resistance in gastrointestinal nematodes of sheep in Southern India. Veterinarski Arhiv. 79: 611-620.

Eguale T, Debele A, Feleke A. (2006). In vitro anthelmintic activity of crude bark extracts of Albizia gummifera on Haemonchus contortus. Bull. Anim. Health Prod. Afr. 54:168-174.

Farnsworth NR, Akerele OB, Soejarto DD, Bingel AS, and Guo Z (1985). Medicinal plants in therapy. Bull. World Health Organ. 63:965-981.

Freiburgaus F, Ogwal EN, Nkunya MH, Kaminsky R, and Brun R (1996). In vitro antitrypanosomal activity of African plants used in traditional medicine in Uganda to treat sleeping sickness. Trop. Med. Int. Health 1:765-771.

Gachathi FN (1989). Kikuyu Botanical Dictionary of Plants. GTZ, Campbell Clause, Nairobi, Kenya. Pp 27.

GBMAFF, 1986. Great Britain Ministry of Agriculture, Fisheries and Food. Manual of veterinary parasitological laboratory techniques. Crown copyright, London, Great Britain.

Kaplan RM (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 20: 477-481.

Kareru PG, Kenji GM, Gachanja AN, Keriko JM, and Mungai G (2007). Traditional medicines among the Embu and Mbeere people of Kenya. Afr. J. Trad. Complement. Altern. Med. 4:75-86.

Kokila K, Deepik S, Priyadharshini A and Sujatha V (2013). Phytopharmacological properties of albizia species: a review. Int. J. Pharm. Pharm. Sci. 5:70-73.

Kokwaro JO (1993). Medicinal plants of East Africa. 2nd ed. Kenya Literature Bureau. Nairobi, Kenya.

Kothari V, Seshadri S (2010). In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica. Biol Res. 43:165-8.

Kumar DRY, Hema V, Agrawal M, Hoskeri J (2012). Manilkara zapota seed embryo extract: A potent anthelminthic agent. Asian J. Pharm. Clin. Res. 5:159-161

Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, Weinstein IB, Kennelly EJ (2003). Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla). J. Nat. Prod. 66:983-6.

Maingi N (1991). Resistance to thiabendazole, fenbendazole and levamisole in Haemonchus and Trichostrongylus species in sheep on a Kenyan farm. Vet. Parasitol 39:285-291.

Maroyi A (2007). Albizia gummifera (J.F.Gmel.) C.A.Sm. In: Louppe, D., Oteng-Amoako, A. A & Brink, M. (Editors). Prota 7(1): Timbers/Bois d’oeuvre 1. [CD root om]. PROTA, Wgaeningen, Netherlands.

Muema SM, Abuga KO, Yenesew A, and Thoithi GN (2014). Phytochemical and anthelmintic study of the root bark of Teclea Trichocarpa, Engl. (Rutaceae). East Cent. Afr. J. Pharm. Sci. 17: 44-47.

Mwangi ESK, Keriko JM, Machocho AK, Wanyonyi AW, Malebo HM, Chhabra SC and Tarus PK (2010). Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa. J. Med. Plants Res. 4:726-731.

Priya S (2012). Integrating modern and traditional medicines: Facts and figures. Available at Accessed 1/9/2013.

Raaman N (2006). Phytochemical techniques. New India Publishing Agency, New Delhi, India. p 1

Schmelzer GH (2011). Vepris trichocarpa (Engl.) Mziray. [Internet] Record from PROTA4U.Schmelzer, G. H & Gurib-Fakim, A (Editors). PROTA (Plant Resources of Tropical Africa/ Resources vegetales de l’Afrique tropicale), Wageningen, Netherlands Accessed 8 September 2013.

Tadesse E, Debella A, and Feleke A (2006). In vitro anthelmintic activity of crude bark extracts of Albizia gummifera on Haemonchus contortus. Bull. Anim. Health Prod. Afr. 54:168-174.

Thoithi GN, Maingi N, Karume D, Gathumbi PK, Mwangi JW, and Kibwage IO (2002). Anthelmintic and other pharmacological activities of the root bark extracts of Albizia anthelmintica Brogn. East Cent. Afr. J. Pharm. Sci. 5:60-66.

WHO, (2008). World Health Organization Fact sheet No. 134, December 2008. Available at Accessed 25/8/2013.

WHO, (2009). World Health Organization. Neglected tropical diseases, hidden successes, emerging opportunities: p 3.

Full Text: PDF


  • There are currently no refbacks.