Background: The use of herbal medicines is global, with the majority of the world's population depending on traditional medicines, particularly herbal remedies for their primary healthcare needs. In Kenya, it is estimated that conventional healthcare system provides for approximately 30% of the population, while nearly 70% rely on herbal remedies. Herbal medicines, however, present safety concerns as they carry a relatively high risk of contamination by pathogenic microbes, organic and inorganic pollutants including toxic metals and non-metals, organic, mycotoxins, endotoxins, and agrochemical residues.

Objective: This study was designed to assess the microbial quality of regulated and unregulated herbal medicinal products in diverse Kenyan markets, such as the supermarkets, roadside vendors, retail pharmacies and herbal clinics, for levels of microbial contaminants.

Materials and Methods: Thirty samples of registered and unregistered herbal medicinal products were collected by purposive sampling from five Kenyan provinces. Microbial load analysis was performed in accordance to pharmacopoeial methods (BP and USP). Microorganisms were further isolated and characterized using differential and selective media and by biochemical analyses.

Results: All registered products had microbial load below 100 cfu/ml, and complied with BP and USP requirements. However, none of the unregistered samples complied with pharmacopoeial limits for either or both bacterial and fungal load limits. Most of the unregistered samples had microbial loads ranging from 3.00×10^6 to 1.56×10^{10} cfu/ml, thus exceeding by far BP or USP standards. The microbial isolates belonged to fifteen (15) different bacterial genera and seven (7) fungal genera. *Escherichia coli* was the most frequently isolated bacteria from 75% of the unregistered product samples while *Klebsiella pneumoniae*, *Enterobacter aerogenes*, and *Staphylococcus aureus* followed in 70%, 60% and 45% of the samples, respectively. *Salmonella* spp was isolated in 40% of the samples while *Shigella* spp was found in 20% of the samples.

Conclusion: Unregulated herbal medicinal products that are available in diverse Kenyan markets show poor microbial quality and exhibit contamination by pathogenic microorganisms. There is need to extend regulatory control by the drug authorities to herbal medicinal products to enhance microbial quality and safety.

Keywords: Microbial contaminants, herbal medicines, microbial load

Received: June, 2013
Published: October, 2013
1. Introduction
The majority of the world’s population depends on traditional medicines, particularly herbal remedies for their primary healthcare needs (WHO, 2008; Akerele, 1993). In Kenya, it is estimated that conventional healthcare system provides for approximately 30% of the population, while nearly 70% rely on herbal remedies (NCPAD, 2007). Furthermore, medical pluralism is widespread in Kenya, with patients seeking both conventional and alternative medicine therapies (Kigen et al., 2013). Indeed the complementary medicine practitioner: patient ratio is much higher than the conventional doctor: patient ratio (Mwangi et al., 2005). Such widespread use of herbal medicines, calls for the assurance of sustainable availability of quality and safe herbal medicines to ensure continued access especially for rural communities, without compromising patient safety (Kigen et al., 2013).

Herbal medicines present safety concerns as they carry a relatively high risk of contamination by pathogenic microbes, organic and inorganic residues including toxic metals and non-metals, organic pollutants, mycotoxins, endotoxins, and agrochemical residues (Okunlola et al., 2007; Abba et al., 2009; de Freitas Araújo and and Bauab, 2012).

In Kenya, the competent authority responsible for regulating the safety and efficacy of pharmaceutical products is the Pharmacy and Poisons Board (PPB). Products for which any medicinal claims are made must be granted marketing authorization by the PPB, which ensures that registered products are manufactured in compliance with Good Manufacturing Practices (GMP), amongst other criteria. The majority of herbal products marketed to members of the public in Kenya are not regulated by the PPB as they are categorized as traditional or cultural remedies whose mode of utilization predate modern regulation, and they thus enjoy regulatory exemption. The few manufacturers of herbal medicines, who register their products with the PPB, mostly do so to access the conventional medicine market through doctors’ prescribing and the retail pharmacies.

This study was therefore designed to assess the microbial quality of regulated and unregulated herbal medicinal products in diverse Kenyan markets, such as the supermarkets, roadside vendors, retail pharmacies and herbal clinics, for levels of microbial contaminants.

2. Materials and Methods

2.1 Collection of Samples
A list of the herbal products that are registered by the Pharmacy and Poisons Board was obtained from the regulatory authority. The total number of registered products was fifty-four, out of which 10 were readily available in retail pharmacies or supermarkets. All 10 available products were purchased. Twenty samples of unregistered herbal products were collected by a purposive sampling technique from five Kenyan provinces, namely: Nairobi, Central, Rift Valley, Nyanza and Western provinces. The samples were obtained from herbal clinics, supermarkets and road side vendors. The non-packaged samples were collected in sterile polythene containers. Thus a total 30 samples, in both liquid and powder formulations were subjected to analysis for this study.

2.2 Microbiological Analyses

Media preparation
All samples were analyzed at the National Quality Control Laboratory for Drugs and Medical Devices, Nairobi, Kenya.

Bacteriological and fungal media were supplied by Himedia Laboratories (India). Media in powder form were weighed, reconstituted with distilled water, heated to completely dissolve the medium, and sterilized by autoclaving at 115 kPa, 121 °C for 15 min. The following media were used: Nutrient Agar, Sabouraud Dextrose Agar (SDA), MacConkey Agar, Esxin-Methylene Blue (EMB) Agar, Salmonella Shigella Agar (SSA), Xylose-Lysine Deoxycholate (XLD) Agar and Mannitol Salt Agar.

All media were tested for viability using Bacillus pumilus NC08241, Staphylococcus aureus NC07447, Pseudomonas aeruginosa NC12924, Saccharomyces cerevisiae NC010716, Candida albicans NC10400, and Aspergillus niger NCPF3179. All standard strains of microorganisms were obtained from National Collection of Type Cultures (NCTC), United Kingdom.

Sample preparation
For water soluble samples, 1 g or 1 ml of the herbal product was dissolved in 10 ml buffered peptone water, pH 7.0, followed by tenfold serial dilution. For lipophilic products, 1 g or 1 ml of sample was homogenized with 0.5 ml of polysorbate 20 and heated to 40 °C in a water bath followed by addition of 10 ml of buffered peptone water, mixing for 15 min, and then followed by 10⁻² serial dilutions.

Isolation of pure colonies
Colonies were isolated based on morphologic differences from their axenic cultures. Colony form, elevation, pigmentation and size were the major distinguishing characteristics. Petri-dishes were divided to quadrants and sub-culturing done by the streak plate technique (Holt et al., 1994).

Microscopy
One loopful of bacteria culture was applied on a clean labeled microscope slide. The smear was heat fixed on the slide by passing it over a flame of the Bunsen burner, and Gram-stained according to Preston and Morel (1962). The smear was blot dried before viewing under the oil immersion objective (X1000) lens.

2.3 Test for specific microbes using differential and selective media
Specific microorganisms were tested using differential and selective media as follows:

Staphylococcus aureus. A pure culture from Nutrient Agar was sub-cultured on a plate of mannitol salt agar freshly prepared as per the manufacturer’s details. It was incubated at 33 °C for 72 h. Growth of white
colonies surrounded by yellow zones indicated the presence of *Staphylococcus aureus* and was confirmed by Gram staining and biochemical tests.

Escherichia coli. A pure culture from Nutrient Agar was inoculated into Eosin Methylene Blue agar. The innoculum was incubated at 33 °C for 72 h. Colonies with dark centers and greenish metallic sheen indicated the presence of lactose fermenters. *E. coli* was confirmed by biochemical tests.

Salmonella spp. A pure culture from Nutrient Agar was inoculated into Xylose Lysine Desoxycholate agar. It was then incubated at 33 °C for 48 h. Growth of well developed red colonies with black centers was considered to be the presence of *salmonella* spp. They were further subjected to biochemical tests for confirmation.

Klebsiella pneumonia. A pure culture from Nutrient Agar was inoculated into MacConkey agar. It was then incubated at 33 °C for 72 h. Growth of round mucoid colonies with colorless edges was considered to be the presence of *Klebsiella pneumonia* which were further subjected to biochemical tests for confirmation.

Enterobacter aerogenes. A pure culture from Nutrient Agar was inoculated into Eosin Methylene Blue. It was then incubated at 33 °C for 72 h. Growth of pinkish large mucoid colonies was considered to be the presence of *Enterobacter aerogene*. Further biochemical tests were done for confirmation.

Shigella spp. A pure culture from Nutrient Agar was inoculated into *Shigella Salmonella* agar. It was incubated at 33 °C for 72 h. Growth of pinkish large mucoid colonies with black centers was considered to be the presence of *Shigella* spp. A further subjection to biochemical tests was done for confirmation.

Candida spp. A pure culture isolated in Sabouraud Dextrose Broth was inoculated into Sabouraud Dextrose Agar. It was incubated at 25 °C for 5 days. Growth of small round moist, white to colorless colonies with even edges was considered to be the presence of *Candida* spp. Further microscopic studies were done for confirmation.

2.4 Biochemical Analyses

Biochemical analyses were performed with the API 20 E system (bioMérieux, France) which tests nitrate reduction, indole production from tryptophan, presence of urease, arginine dihydrolase, β-galactosidase, β-glucosidase, cytochrome oxidase, protease, glucose fermentation and assimilation of L-tryptophan, sodium pyruvate, gelatin, D-glucose, D-mannitol, Inositol, D-sorbitol, L-rhamnose, D-sucrose, D-melibiose, Amygdalin, and L-arabinose.

Analyses with the API 20 E system were performed according to the manufacturer’s instructions. Briefly the API 20 E strip was prepared by distributing 1 ml of distilled water into the honeycombed wells of the tray to create a humid atmosphere. The innoculum was suspended in 5 ml of 0.85 % Nacl. Anaerobiosis was created in the tests for arginine dihydrolase (ADH), lysine decarboxylase (LDC), ornithine decarboxylase (ODC), H₂S production and urea hydrolysis (URE) by overlaying with mineral oil. Samples were incubated at 37 °C for 24 h. The strips were read using a color chart provided by the manufacturer.

The oxidase test was done by using oxidase discs (Himedia laboratories, India) for detection of oxidation production. Isolated colonies were applied on oxidase discs and observed within 10 sec. at room temperature (25 °C) for change in colour.

The microorganisms were identified based on a numerical taxonomy profile according to the manufacturer’s chart (bioMérieux, France, available at http://www.biomerieux.com).

2.5 Molecular Analyses and Identification

Bacterial genomic deoxyribonucleic acid (DNA) was isolated from plate cultures using a modified alkaline lysis method as described in Osanjo et al (2009). The 16S rDNA was amplified using the primer pair F27 (5'-AGAGTTTGATCCTGGCTCAG-3') and R1492 (5'-TACG GYTACCTTACGACTT-3') that amplifies bacterial 16S rDNA from position 27 to 1492 in the *E. coli* numbering system. The primers were supplied by MWG Biotech (Germany). Polymerase chain reaction (PCR) amplifications were performed in a thermal cycler (GeneAmp PCR systems 9700, Applied Biosystems USA) under the conditions described previously (Osanjo et al, 2009). The amplification products were purified from agarose gel using the QIAEX II extraction kit (Qiagen, USA) according to the manufacturer’s method.

Purified 16S rDNA was sequenced with the PCR primers (F27 and R1492) in the forward and reverse directions, in a Perkin-Elmer fluorescent dye-labelled dideoxynucleotides (Perkin-Elmer, USA) by the Sequencing Unit (Segolip) of the International Livestock Research Institute (ILRI, Kenya).

3. Results

The results of the microbiological analyses are summarized in **Table 1**.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>CFU/ml</th>
<th>CFU/ml</th>
<th>CFU/ml</th>
<th>CFU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>6 × 10⁴</td>
<td>8 × 10⁴</td>
<td>1.5 × 10⁵</td>
<td>3 × 10⁵</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>2.5 × 10⁵</td>
<td>3 × 10⁵</td>
<td>3.0 × 10⁵</td>
<td>3.5 × 10⁵</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>4 × 10⁵</td>
<td>5 × 10⁵</td>
<td>6 × 10⁵</td>
<td>7 × 10⁵</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>5 × 10⁵</td>
<td>6 × 10⁵</td>
<td>7 × 10⁵</td>
<td>8 × 10⁵</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>6 × 10⁵</td>
<td>7 × 10⁵</td>
<td>8 × 10⁵</td>
<td>9 × 10⁵</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>8 × 10⁵</td>
<td>9 × 10⁵</td>
<td>1.0 × 10⁶</td>
<td>1.2 × 10⁶</td>
</tr>
</tbody>
</table>

Two samples, KM and MB, had an average total aerobic microbial count of 6.0 × 10⁵ and 6.50 × 10⁵ cfu/ ml respectively, thus complying with the BP and USP limits for bacterial loads (BP, 2007 and USP-NF 2009). However even though these samples complied with bacterial load limits, their fungal loads were nonetheless higher than pharmacopoeial limits. The rest of the unregistered samples had a microbial loads ranging from 3.00×10⁵ to 1.56×10⁶ cfu/ml, and did not comply with BP or USP standards. All registered products had microbiol load below 100 cfu/ml, and therefore complied to BP and USP requirements.

The microbial isolates belonged to fifteen (15) different bacterial genera and seven (7) fungal genera. *Escherichia coli* was the most frequently isolated bacteria from 75 % of the unregistered product samples while *Klebsiella pneumoniae*, *Enterobacter aerogenes*, and *Staphylococcus aureus* followed in 70 %, 60 % and 45 % of the samples respectively. *Salmonella* spp was isolated in 40 % of the samples while *Shigella* spp was
in 20%. The rest of the bacteria were isolated from less than 10% of the samples.

Candida spp formed the major fungal isolate from 50% of the samples followed by *Fusarium* and *Aspergillus* species which were in 35 and 25% of the samples, respectively. *Rhizopus* spp was isolated from 20% of the samples while the rest of the fungal species were isolated from less than 10% of the samples.

Table 1: Microbial Counts for Unregistered Herbal medicinal samples obtained from Kenya

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Aerobic Microbial Count (cfu/ml)</th>
<th>Fungal Count (cfu/ml)</th>
<th>Microorganism identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>3.00×10^6</td>
<td>5.20×10^6</td>
<td>Klebsiella pneumonia, Chrysemonas luteola, Aspergillus sp.</td>
</tr>
<tr>
<td>BP</td>
<td>2.61×10^7</td>
<td>2.04×10^7</td>
<td>Klebsiella oxytoca, Enterobacter cloacae, Candida sp.</td>
</tr>
<tr>
<td>CS</td>
<td>1.21×10^7</td>
<td>1.00×10^7</td>
<td>Staphylococcus aureus, E. coli, Rhizopus sp., Fusarium sp., B. subtilis</td>
</tr>
<tr>
<td>DF</td>
<td>2.50×10^7</td>
<td>1.84×10^6</td>
<td>S. aureus, K. pneumonia, E. coli, Enterobacter aerogenes, Salmonella sp</td>
</tr>
<tr>
<td>GI</td>
<td>2.08×10^7</td>
<td>2.23×10^7</td>
<td>Enterobacter aerogenes, K. pneumonia, E. coli, Aspergillus sp. Fusarium</td>
</tr>
<tr>
<td>GS</td>
<td>1.56×10^{10}</td>
<td>1.07×10^7</td>
<td>E. coli, K. pneumonia, E. aerogenes, Fusarium sp. Aspergillus sp. Rhizopus sp., Baccillus safensis</td>
</tr>
<tr>
<td>HB</td>
<td>1.03×10^8</td>
<td>8.1×10^8</td>
<td>S. aureus, K. pneumonia, E. coli, E. aerogenes, Salmonella sp. Aspergillus sp. Torula sp, Bacillus flexus</td>
</tr>
<tr>
<td>KC</td>
<td>1.01×10^7</td>
<td>2.05×10^7</td>
<td>Salmonella sp. Enterobacter aerogenes, Candida sp.</td>
</tr>
<tr>
<td>KD</td>
<td>1.56×10^9</td>
<td>1.48×10^7</td>
<td>Staphylococcus aureus, E. coli, Candida sp., Fusarium sp.</td>
</tr>
<tr>
<td>KH</td>
<td>2.14×10^7</td>
<td>1.14×10^7</td>
<td>K. pneumonia, Enterobacter aerogenes, E. coli, Candida sp. Torula sp</td>
</tr>
<tr>
<td>KM</td>
<td>6.00×10^5</td>
<td>5.30×10^4</td>
<td>S. aureus, K. pneumonia, E. coli, E. aerogenes, Salmonella sp. Shigella sp. Candida sp. Serratia marsenses, Kocuria rosea</td>
</tr>
<tr>
<td>MB</td>
<td>6.50×10^5</td>
<td>5.40×10^5</td>
<td>Klebsiella pneumonia, E. coli, Fusarium sp.</td>
</tr>
<tr>
<td>MC</td>
<td>2.50×10^7</td>
<td>6.80×10^7</td>
<td>K. pneumonia, E. coli, Rhizopus sp., Candida sp. Penicillium sp, Torula sp</td>
</tr>
<tr>
<td>MH</td>
<td>1.50×10^{10}</td>
<td>5.40×10^6</td>
<td>K. pneumonia, E. coli, E. aerogenes, salmonella sp, Shigella sp, Candida sp, Enterobacter agglomerurans, Flavobacterium sp, Enterobacter cloacae</td>
</tr>
<tr>
<td>MS</td>
<td>2.50×10^7</td>
<td>7.10×10^6</td>
<td>S. aureus, K. pneumonia, E. aerogenes, Salmonella sp., Penicillium sp.</td>
</tr>
<tr>
<td>MW</td>
<td>2.94×10^7</td>
<td>2.63×10^7</td>
<td>K. pneumonia, E. coli, Enterobacter aerogenes, Fusarium sp.</td>
</tr>
<tr>
<td>NE</td>
<td>1.80×10^9</td>
<td>1.56×10^9</td>
<td>S. aureus, K. pneumonia, E. coli, E. aerogenes, Salmonella sp, Shigella sp, Candida sp. Pseudomonas aeruginosa., Bacillus pumillii</td>
</tr>
<tr>
<td>NP</td>
<td>3.6×10^6</td>
<td>5.00×10^5</td>
<td>Staphylococcus aureus, Salmonella, Aspergillus sp. Fusarium sp.</td>
</tr>
<tr>
<td>ST</td>
<td>2.73×10^7</td>
<td>2.07×10^7</td>
<td>E. coli, Candida sp. Penicillium sp.</td>
</tr>
<tr>
<td>US</td>
<td>1.66×10^7</td>
<td>1.86×10^7</td>
<td>S. aureus, K. pneumonia, E. coli, E. aerogenes, Salmonella sp, Shigella sp</td>
</tr>
</tbody>
</table>

Key: *E. Coli* - *Escherichia coli*; † *E. aerogenes* - *Enterobacter aerogenes*

4. Discussion

All unregulated herbal medicinal products did not comply with the BP standards for microbial quality. The limits for microbial contamination by the BP for aerobic microbial and fungal counts for herbal products to which boiling water is added before use are not more than 10^7 and 10^5 cfu/g, respectively. *Salmonella* and *Escherichia coli* and should also be absent according to BP specifications. The unregulated herbal medicinal products therefore did not meet these pharmacopeial specifications.

The majority of the samples contained pathogenic bacterial contaminants. *Escherichia coli* which contaminated 75% of the samples is a well known enteropathogen, and is the most common causative agent of childhood diarrhea of bacterial origin (Bonkoungou et al., 2013). *E. coli* is also used as a marker of fecal contamination in standard assays of water and food (APHA, 1992; Jay, 1997).

The high levels of microbial contamination observed in this study may be attributed to the methods of their preparation. Personnel could introduce microorganisms to the products during handling of the raw materials and packaging of products. Abba et al. (2009) have also suggested that unhygienic equipment and materials could also be a source of microbial contaminants. Good Manufacturing Practices are therefore required throughout the process of

A KeSoBAP Publication ©2013. All rights reserved. ISSN 2303-9841
harvesting, drying, storage, handling and preparation of the herbal medicinal product.

Other potential pathogenic microorganisms isolated from the samples included: Salmonella spp, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, and Staphylococcus aureus. Staphylococcus aureus, for example has been associated with a number of complications especially to immune-compromised individuals. It can produce proteins that disable the immune system and damage tissues. It may also release exotoxins which cause gastroenteritis (Lowy, 1998).

The finding of other potential pathogens may also be significant.

Klebsiella pneumoniae, a Gram negative lactose fermenting bacterium found in the normal flora of the mouth is ranked second from E. coli for urinary tract infections in older people and is also an opportunistic infection of people with weakened immunity. It also commonly causes pneumonia (Nordmann and Naas, 2009). Pseudomonas aeruginosa is a notorious cause of nosocomial infections, and may cause life threatening illness in immune compromised individuals (Van Eldere, 2003).

Salmonella spp is clinically relevant as it may cause typhoid, a disease that is a public health concern in Kenya (Kariuki, 2010).

The presence of moulds such as Penicillium spp, Candida spp and Aspergillus spp are of additional concern. Both Penicillium spp and Aspergillus spp are associated with food poisoning and may be responsible for infections particularly in immunocompromised individuals (Lin, 2001; Bateman, 2002). Penicillium spp has been isolated from solids and liquid herbal products in a study by Esimone et al. (2007). In addition Penicillium spp produces the mycotoxin, ochratoxin A, which is both nephrotoxic and carcinogenic (Burge 1989).

5. Conclusion

This study has showed that unregulated herbal medicines marketed in Kenya are highly contaminated with microorganisms, some of which are pathogenic. Such unregulated medicinal products may facilitate transmission of communicable diseases in the population and therefore present a public health problem.

There is consequently need to extend government regulation to herbal medicinal products to ensure that their processing, preparation or manufacture comply with Good Manufacturing Practices, and thus lessen risks to consumers and patients.

Conflict of Interest declaration

The authors declare no conflict of interest

References

